Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(239,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.239");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
239.1 | −1.82526 | − | 1.82526i | 1.43862 | − | 0.964559i | 4.66316i | 0.624703 | + | 0.624703i | −4.38643 | − | 0.865285i | −1.18894 | − | 1.18894i | 4.86096 | − | 4.86096i | 1.13925 | − | 2.77527i | − | 2.28049i | |||
239.2 | −1.82526 | − | 1.82526i | 1.43862 | + | 0.964559i | 4.66316i | 0.624703 | + | 0.624703i | −0.865285 | − | 4.38643i | 1.18894 | + | 1.18894i | 4.86096 | − | 4.86096i | 1.13925 | + | 2.77527i | − | 2.28049i | |||
239.3 | −1.42721 | − | 1.42721i | −1.57050 | − | 0.730430i | 2.07385i | 1.72251 | + | 1.72251i | 1.19895 | + | 3.28391i | −2.20041 | − | 2.20041i | 0.105393 | − | 0.105393i | 1.93294 | + | 2.29428i | − | 4.91676i | |||
239.4 | −1.42721 | − | 1.42721i | −1.57050 | + | 0.730430i | 2.07385i | 1.72251 | + | 1.72251i | 3.28391 | + | 1.19895i | 2.20041 | + | 2.20041i | 0.105393 | − | 0.105393i | 1.93294 | − | 2.29428i | − | 4.91676i | |||
239.5 | −1.38407 | − | 1.38407i | 0.526444 | − | 1.65011i | 1.83129i | 1.04664 | + | 1.04664i | −3.01250 | + | 1.55523i | 3.17096 | + | 3.17096i | −0.233508 | + | 0.233508i | −2.44571 | − | 1.73738i | − | 2.89724i | |||
239.6 | −1.38407 | − | 1.38407i | 0.526444 | + | 1.65011i | 1.83129i | 1.04664 | + | 1.04664i | 1.55523 | − | 3.01250i | −3.17096 | − | 3.17096i | −0.233508 | + | 0.233508i | −2.44571 | + | 1.73738i | − | 2.89724i | |||
239.7 | −0.928351 | − | 0.928351i | −1.37245 | − | 1.05658i | − | 0.276330i | −2.12536 | − | 2.12536i | 0.293240 | + | 2.25500i | 2.06528 | + | 2.06528i | −2.11323 | + | 2.11323i | 0.767265 | + | 2.90022i | 3.94616i | |||
239.8 | −0.928351 | − | 0.928351i | −1.37245 | + | 1.05658i | − | 0.276330i | −2.12536 | − | 2.12536i | 2.25500 | + | 0.293240i | −2.06528 | − | 2.06528i | −2.11323 | + | 2.11323i | 0.767265 | − | 2.90022i | 3.94616i | |||
239.9 | −0.540287 | − | 0.540287i | 0.0858391 | − | 1.72992i | − | 1.41618i | 0.996141 | + | 0.996141i | −0.981032 | + | 0.888277i | −1.80254 | − | 1.80254i | −1.84572 | + | 1.84572i | −2.98526 | − | 0.296990i | − | 1.07640i | ||
239.10 | −0.540287 | − | 0.540287i | 0.0858391 | + | 1.72992i | − | 1.41618i | 0.996141 | + | 0.996141i | 0.888277 | − | 0.981032i | 1.80254 | + | 1.80254i | −1.84572 | + | 1.84572i | −2.98526 | + | 0.296990i | − | 1.07640i | ||
239.11 | −0.249216 | − | 0.249216i | 0.892053 | − | 1.48467i | − | 1.87578i | −2.45719 | − | 2.45719i | −0.592316 | + | 0.147689i | 0.821655 | + | 0.821655i | −0.965906 | + | 0.965906i | −1.40848 | − | 2.64881i | 1.22474i | |||
239.12 | −0.249216 | − | 0.249216i | 0.892053 | + | 1.48467i | − | 1.87578i | −2.45719 | − | 2.45719i | 0.147689 | − | 0.592316i | −0.821655 | − | 0.821655i | −0.965906 | + | 0.965906i | −1.40848 | + | 2.64881i | 1.22474i | |||
239.13 | 0.249216 | + | 0.249216i | 0.892053 | − | 1.48467i | − | 1.87578i | 2.45719 | + | 2.45719i | 0.592316 | − | 0.147689i | −0.821655 | − | 0.821655i | 0.965906 | − | 0.965906i | −1.40848 | − | 2.64881i | 1.22474i | |||
239.14 | 0.249216 | + | 0.249216i | 0.892053 | + | 1.48467i | − | 1.87578i | 2.45719 | + | 2.45719i | −0.147689 | + | 0.592316i | 0.821655 | + | 0.821655i | 0.965906 | − | 0.965906i | −1.40848 | + | 2.64881i | 1.22474i | |||
239.15 | 0.540287 | + | 0.540287i | 0.0858391 | − | 1.72992i | − | 1.41618i | −0.996141 | − | 0.996141i | 0.981032 | − | 0.888277i | 1.80254 | + | 1.80254i | 1.84572 | − | 1.84572i | −2.98526 | − | 0.296990i | − | 1.07640i | ||
239.16 | 0.540287 | + | 0.540287i | 0.0858391 | + | 1.72992i | − | 1.41618i | −0.996141 | − | 0.996141i | −0.888277 | + | 0.981032i | −1.80254 | − | 1.80254i | 1.84572 | − | 1.84572i | −2.98526 | + | 0.296990i | − | 1.07640i | ||
239.17 | 0.928351 | + | 0.928351i | −1.37245 | − | 1.05658i | − | 0.276330i | 2.12536 | + | 2.12536i | −0.293240 | − | 2.25500i | −2.06528 | − | 2.06528i | 2.11323 | − | 2.11323i | 0.767265 | + | 2.90022i | 3.94616i | |||
239.18 | 0.928351 | + | 0.928351i | −1.37245 | + | 1.05658i | − | 0.276330i | 2.12536 | + | 2.12536i | −2.25500 | − | 0.293240i | 2.06528 | + | 2.06528i | 2.11323 | − | 2.11323i | 0.767265 | − | 2.90022i | 3.94616i | |||
239.19 | 1.38407 | + | 1.38407i | 0.526444 | − | 1.65011i | 1.83129i | −1.04664 | − | 1.04664i | 3.01250 | − | 1.55523i | −3.17096 | − | 3.17096i | 0.233508 | − | 0.233508i | −2.44571 | − | 1.73738i | − | 2.89724i | |||
239.20 | 1.38407 | + | 1.38407i | 0.526444 | + | 1.65011i | 1.83129i | −1.04664 | − | 1.04664i | −1.55523 | + | 3.01250i | 3.17096 | + | 3.17096i | 0.233508 | − | 0.233508i | −2.44571 | + | 1.73738i | − | 2.89724i | |||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
13.d | odd | 4 | 2 | inner |
39.d | odd | 2 | 1 | inner |
39.f | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.f.g | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 507.2.f.g | ✓ | 48 |
13.b | even | 2 | 1 | inner | 507.2.f.g | ✓ | 48 |
13.c | even | 3 | 2 | 507.2.k.k | 96 | ||
13.d | odd | 4 | 2 | inner | 507.2.f.g | ✓ | 48 |
13.e | even | 6 | 2 | 507.2.k.k | 96 | ||
13.f | odd | 12 | 4 | 507.2.k.k | 96 | ||
39.d | odd | 2 | 1 | inner | 507.2.f.g | ✓ | 48 |
39.f | even | 4 | 2 | inner | 507.2.f.g | ✓ | 48 |
39.h | odd | 6 | 2 | 507.2.k.k | 96 | ||
39.i | odd | 6 | 2 | 507.2.k.k | 96 | ||
39.k | even | 12 | 4 | 507.2.k.k | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.f.g | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
507.2.f.g | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
507.2.f.g | ✓ | 48 | 13.b | even | 2 | 1 | inner |
507.2.f.g | ✓ | 48 | 13.d | odd | 4 | 2 | inner |
507.2.f.g | ✓ | 48 | 39.d | odd | 2 | 1 | inner |
507.2.f.g | ✓ | 48 | 39.f | even | 4 | 2 | inner |
507.2.k.k | 96 | 13.c | even | 3 | 2 | ||
507.2.k.k | 96 | 13.e | even | 6 | 2 | ||
507.2.k.k | 96 | 13.f | odd | 12 | 4 | ||
507.2.k.k | 96 | 39.h | odd | 6 | 2 | ||
507.2.k.k | 96 | 39.i | odd | 6 | 2 | ||
507.2.k.k | 96 | 39.k | even | 12 | 4 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\):
\( T_{2}^{24} + 79T_{2}^{20} + 1885T_{2}^{16} + 16327T_{2}^{12} + 37725T_{2}^{8} + 11531T_{2}^{4} + 169 \) |
\( T_{5}^{24} + 272T_{5}^{20} + 22390T_{5}^{16} + 611594T_{5}^{12} + 4403113T_{5}^{8} + 10383698T_{5}^{4} + 4826809 \) |
\( T_{7}^{24} + 623T_{7}^{20} + 104321T_{7}^{16} + 6865831T_{7}^{12} + 175807737T_{7}^{8} + 1229789799T_{7}^{4} + 1698181681 \) |