Properties

Label 507.2.f.d.437.2
Level $507$
Weight $2$
Character 507.437
Analytic conductor $4.048$
Analytic rank $0$
Dimension $8$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(239,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 437.2
Root \(0.500000 + 1.56488i\) of defining polynomial
Character \(\chi\) \(=\) 507.437
Dual form 507.2.f.d.239.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06488 + 1.06488i) q^{2} +1.73205 q^{3} -0.267949i q^{4} +(2.90931 - 2.90931i) q^{5} +(-1.84443 + 1.84443i) q^{6} +(-1.84443 - 1.84443i) q^{8} +3.00000 q^{9} +6.19615i q^{10} +(-0.779548 - 0.779548i) q^{11} -0.464102i q^{12} +(5.03908 - 5.03908i) q^{15} +4.46410 q^{16} +(-3.19465 + 3.19465i) q^{18} +(-0.779548 - 0.779548i) q^{20} +1.66025 q^{22} +(-3.19465 - 3.19465i) q^{24} -11.9282i q^{25} +5.19615 q^{27} +10.7321i q^{30} +(-1.06488 + 1.06488i) q^{32} +(-1.35022 - 1.35022i) q^{33} -0.803848i q^{36} -10.7321 q^{40} +(-7.16884 + 7.16884i) q^{41} -4.00000i q^{43} +(-0.208879 + 0.208879i) q^{44} +(8.72794 - 8.72794i) q^{45} +(6.59817 + 6.59817i) q^{47} +7.73205 q^{48} +7.00000i q^{49} +(12.7021 + 12.7021i) q^{50} +(-5.53329 + 5.53329i) q^{54} -4.53590 q^{55} +(10.8577 + 10.8577i) q^{59} +(-1.35022 - 1.35022i) q^{60} -13.8564 q^{61} +6.66025i q^{64} +2.87564 q^{66} +(-3.47998 + 3.47998i) q^{71} +(-5.53329 - 5.53329i) q^{72} -20.6603i q^{75} +10.3923 q^{79} +(12.9875 - 12.9875i) q^{80} +9.00000 q^{81} -15.2679i q^{82} +(-9.29861 + 9.29861i) q^{83} +(4.25953 + 4.25953i) q^{86} +2.87564i q^{88} +(-12.9875 - 12.9875i) q^{89} +18.5885i q^{90} -14.0526 q^{94} +(-1.84443 + 1.84443i) q^{96} +(-7.45418 - 7.45418i) q^{98} +(-2.33864 - 2.33864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} + 8 q^{16} - 56 q^{22} - 72 q^{40} + 48 q^{48} - 64 q^{55} + 120 q^{66} + 72 q^{81} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06488 + 1.06488i −0.752986 + 0.752986i −0.975035 0.222050i \(-0.928725\pi\)
0.222050 + 0.975035i \(0.428725\pi\)
\(3\) 1.73205 1.00000
\(4\) 0.267949i 0.133975i
\(5\) 2.90931 2.90931i 1.30108 1.30108i 0.373423 0.927661i \(-0.378184\pi\)
0.927661 0.373423i \(-0.121816\pi\)
\(6\) −1.84443 + 1.84443i −0.752986 + 0.752986i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −1.84443 1.84443i −0.652105 0.652105i
\(9\) 3.00000 1.00000
\(10\) 6.19615i 1.95940i
\(11\) −0.779548 0.779548i −0.235043 0.235043i 0.579751 0.814794i \(-0.303150\pi\)
−0.814794 + 0.579751i \(0.803150\pi\)
\(12\) 0.464102i 0.133975i
\(13\) 0 0
\(14\) 0 0
\(15\) 5.03908 5.03908i 1.30108 1.30108i
\(16\) 4.46410 1.11603
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −3.19465 + 3.19465i −0.752986 + 0.752986i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) −0.779548 0.779548i −0.174312 0.174312i
\(21\) 0 0
\(22\) 1.66025 0.353967
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −3.19465 3.19465i −0.652105 0.652105i
\(25\) 11.9282i 2.38564i
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 10.7321i 1.95940i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −1.06488 + 1.06488i −0.188246 + 0.188246i
\(33\) −1.35022 1.35022i −0.235043 0.235043i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.803848i 0.133975i
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −10.7321 −1.69689
\(41\) −7.16884 + 7.16884i −1.11959 + 1.11959i −0.127783 + 0.991802i \(0.540786\pi\)
−0.991802 + 0.127783i \(0.959214\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −0.208879 + 0.208879i −0.0314897 + 0.0314897i
\(45\) 8.72794 8.72794i 1.30108 1.30108i
\(46\) 0 0
\(47\) 6.59817 + 6.59817i 0.962443 + 0.962443i 0.999320 0.0368772i \(-0.0117410\pi\)
−0.0368772 + 0.999320i \(0.511741\pi\)
\(48\) 7.73205 1.11603
\(49\) 7.00000i 1.00000i
\(50\) 12.7021 + 12.7021i 1.79635 + 1.79635i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −5.53329 + 5.53329i −0.752986 + 0.752986i
\(55\) −4.53590 −0.611620
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.8577 + 10.8577i 1.41355 + 1.41355i 0.728392 + 0.685160i \(0.240268\pi\)
0.685160 + 0.728392i \(0.259732\pi\)
\(60\) −1.35022 1.35022i −0.174312 0.174312i
\(61\) −13.8564 −1.77413 −0.887066 0.461644i \(-0.847260\pi\)
−0.887066 + 0.461644i \(0.847260\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 6.66025i 0.832532i
\(65\) 0 0
\(66\) 2.87564 0.353967
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.47998 + 3.47998i −0.412998 + 0.412998i −0.882782 0.469784i \(-0.844332\pi\)
0.469784 + 0.882782i \(0.344332\pi\)
\(72\) −5.53329 5.53329i −0.652105 0.652105i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 20.6603i 2.38564i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3923 1.16923 0.584613 0.811312i \(-0.301246\pi\)
0.584613 + 0.811312i \(0.301246\pi\)
\(80\) 12.9875 12.9875i 1.45204 1.45204i
\(81\) 9.00000 1.00000
\(82\) 15.2679i 1.68606i
\(83\) −9.29861 + 9.29861i −1.02065 + 1.02065i −0.0208726 + 0.999782i \(0.506644\pi\)
−0.999782 + 0.0208726i \(0.993356\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.25953 + 4.25953i 0.459317 + 0.459317i
\(87\) 0 0
\(88\) 2.87564i 0.306545i
\(89\) −12.9875 12.9875i −1.37667 1.37667i −0.850185 0.526484i \(-0.823510\pi\)
−0.526484 0.850185i \(-0.676490\pi\)
\(90\) 18.5885i 1.95940i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −14.0526 −1.44941
\(95\) 0 0
\(96\) −1.84443 + 1.84443i −0.188246 + 0.188246i
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −7.45418 7.45418i −0.752986 0.752986i
\(99\) −2.33864 2.33864i −0.235043 0.235043i
\(100\) −3.19615 −0.319615
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 1.39230i 0.133975i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 4.83020 4.83020i 0.460541 0.460541i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −23.1244 −2.12877
\(119\) 0 0
\(120\) −18.5885 −1.69689
\(121\) 9.78461i 0.889510i
\(122\) 14.7554 14.7554i 1.33590 1.33590i
\(123\) −12.4168 + 12.4168i −1.11959 + 1.11959i
\(124\) 0 0
\(125\) −20.1563 20.1563i −1.80284 1.80284i
\(126\) 0 0
\(127\) 17.3205i 1.53695i −0.639882 0.768473i \(-0.721017\pi\)
0.639882 0.768473i \(-0.278983\pi\)
\(128\) −9.22215 9.22215i −0.815131 0.815131i
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −0.361790 + 0.361790i −0.0314897 + 0.0314897i
\(133\) 0 0
\(134\) 0 0
\(135\) 15.1172 15.1172i 1.30108 1.30108i
\(136\) 0 0
\(137\) −10.2870 10.2870i −0.878881 0.878881i 0.114538 0.993419i \(-0.463461\pi\)
−0.993419 + 0.114538i \(0.963461\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 11.4284 + 11.4284i 0.962443 + 0.962443i
\(142\) 7.41154i 0.621963i
\(143\) 0 0
\(144\) 13.3923 1.11603
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) −0.208879 + 0.208879i −0.0171121 + 0.0171121i −0.715611 0.698499i \(-0.753852\pi\)
0.698499 + 0.715611i \(0.253852\pi\)
\(150\) 22.0007 + 22.0007i 1.79635 + 1.79635i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −11.0666 + 11.0666i −0.880410 + 0.880410i
\(159\) 0 0
\(160\) 6.19615i 0.489849i
\(161\) 0 0
\(162\) −9.58394 + 9.58394i −0.752986 + 0.752986i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 1.92089 + 1.92089i 0.149996 + 0.149996i
\(165\) −7.85641 −0.611620
\(166\) 19.8038i 1.53708i
\(167\) 8.15727 + 8.15727i 0.631229 + 0.631229i 0.948376 0.317148i \(-0.102725\pi\)
−0.317148 + 0.948376i \(0.602725\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −1.07180 −0.0817237
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.47998 3.47998i −0.262313 0.262313i
\(177\) 18.8061 + 18.8061i 1.41355 + 1.41355i
\(178\) 27.6603 2.07322
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −2.33864 2.33864i −0.174312 0.174312i
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.76798 1.76798i 0.128943 0.128943i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 11.5359i 0.832532i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.87564 0.133975
\(197\) 17.2470 17.2470i 1.22880 1.22880i 0.264379 0.964419i \(-0.414833\pi\)
0.964419 0.264379i \(-0.0851669\pi\)
\(198\) 4.98076 0.353967
\(199\) 24.2487i 1.71895i 0.511182 + 0.859473i \(0.329208\pi\)
−0.511182 + 0.859473i \(0.670792\pi\)
\(200\) −22.0007 + 22.0007i −1.55569 + 1.55569i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 41.7128i 2.91335i
\(206\) −17.0381 17.0381i −1.18710 1.18710i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.46410 0.238479 0.119239 0.992866i \(-0.461954\pi\)
0.119239 + 0.992866i \(0.461954\pi\)
\(212\) 0 0
\(213\) −6.02751 + 6.02751i −0.412998 + 0.412998i
\(214\) 0 0
\(215\) −11.6373 11.6373i −0.793654 0.793654i
\(216\) −9.58394 9.58394i −0.652105 0.652105i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.21539i 0.0819416i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 35.7846i 2.38564i
\(226\) 0 0
\(227\) 20.9359 20.9359i 1.38956 1.38956i 0.563329 0.826232i \(-0.309520\pi\)
0.826232 0.563329i \(-0.190480\pi\)
\(228\) 0 0
\(229\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 38.3923 2.50444
\(236\) 2.90931 2.90931i 0.189380 0.189380i
\(237\) 18.0000 1.16923
\(238\) 0 0
\(239\) −18.2354 + 18.2354i −1.17955 + 1.17955i −0.199693 + 0.979858i \(0.563995\pi\)
−0.979858 + 0.199693i \(0.936005\pi\)
\(240\) 22.4950 22.4950i 1.45204 1.45204i
\(241\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(242\) 10.4195 + 10.4195i 0.669788 + 0.669788i
\(243\) 15.5885 1.00000
\(244\) 3.71281i 0.237688i
\(245\) 20.3652 + 20.3652i 1.30108 + 1.30108i
\(246\) 26.4449i 1.68606i
\(247\) 0 0
\(248\) 0 0
\(249\) −16.1057 + 16.1057i −1.02065 + 1.02065i
\(250\) 42.9282 2.71502
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 18.4443 + 18.4443i 1.15730 + 1.15730i
\(255\) 0 0
\(256\) 6.32051 0.395032
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 7.37772 + 7.37772i 0.459317 + 0.459317i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 4.98076i 0.306545i
\(265\) 0 0
\(266\) 0 0
\(267\) −22.4950 22.4950i −1.37667 1.37667i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 32.1962i 1.95940i
\(271\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 21.9090 1.32357
\(275\) −9.29861 + 9.29861i −0.560727 + 0.560727i
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 21.2976 21.2976i 1.27735 1.27735i
\(279\) 0 0
\(280\) 0 0
\(281\) 9.86928 + 9.86928i 0.588752 + 0.588752i 0.937293 0.348542i \(-0.113323\pi\)
−0.348542 + 0.937293i \(0.613323\pi\)
\(282\) −24.3397 −1.44941
\(283\) 17.3205i 1.02960i −0.857311 0.514799i \(-0.827867\pi\)
0.857311 0.514799i \(-0.172133\pi\)
\(284\) 0.932458 + 0.932458i 0.0553312 + 0.0553312i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.19465 + 3.19465i −0.188246 + 0.188246i
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.0656 + 23.0656i 1.34751 + 1.34751i 0.888359 + 0.459149i \(0.151846\pi\)
0.459149 + 0.888359i \(0.348154\pi\)
\(294\) −12.9110 12.9110i −0.752986 0.752986i
\(295\) 63.1769 3.67830
\(296\) 0 0
\(297\) −4.05065 4.05065i −0.235043 0.235043i
\(298\) 0.444864i 0.0257703i
\(299\) 0 0
\(300\) −5.53590 −0.319615
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −40.3126 + 40.3126i −2.30829 + 2.30829i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 27.7128i 1.57653i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −34.6410 −1.95803 −0.979013 0.203798i \(-0.934671\pi\)
−0.979013 + 0.203798i \(0.934671\pi\)
\(314\) −2.12976 + 2.12976i −0.120190 + 0.120190i
\(315\) 0 0
\(316\) 2.78461i 0.156647i
\(317\) 11.8461 11.8461i 0.665345 0.665345i −0.291290 0.956635i \(-0.594084\pi\)
0.956635 + 0.291290i \(0.0940844\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 19.3768 + 19.3768i 1.08319 + 1.08319i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 2.41154i 0.133975i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 26.4449 1.46017
\(329\) 0 0
\(330\) 8.36615 8.36615i 0.460541 0.460541i
\(331\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) 2.49155 + 2.49155i 0.136742 + 0.136742i
\(333\) 0 0
\(334\) −17.3731 −0.950612
\(335\) 0 0
\(336\) 0 0
\(337\) 6.92820i 0.377403i −0.982034 0.188702i \(-0.939572\pi\)
0.982034 0.188702i \(-0.0604279\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −7.37772 + 7.37772i −0.397780 + 0.397780i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.66025 0.0884918
\(353\) 1.76798 1.76798i 0.0940998 0.0940998i −0.658490 0.752590i \(-0.728804\pi\)
0.752590 + 0.658490i \(0.228804\pi\)
\(354\) −40.0526 −2.12877
\(355\) 20.2487i 1.07469i
\(356\) −3.47998 + 3.47998i −0.184439 + 0.184439i
\(357\) 0 0
\(358\) 0 0
\(359\) −26.7545 26.7545i −1.41205 1.41205i −0.745143 0.666905i \(-0.767619\pi\)
−0.666905 0.745143i \(-0.732381\pi\)
\(360\) −32.1962 −1.69689
\(361\) 19.0000i 1.00000i
\(362\) 10.6488 + 10.6488i 0.559690 + 0.559690i
\(363\) 16.9474i 0.889510i
\(364\) 0 0
\(365\) 0 0
\(366\) 25.5572 25.5572i 1.33590 1.33590i
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −21.5065 + 21.5065i −1.11959 + 1.11959i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −13.8564 −0.717458 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(374\) 0 0
\(375\) −34.9118 34.9118i −1.80284 1.80284i
\(376\) 24.3397i 1.25523i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 30.0000i 1.53695i
\(382\) 0 0
\(383\) 11.9990 11.9990i 0.613122 0.613122i −0.330636 0.943758i \(-0.607263\pi\)
0.943758 + 0.330636i \(0.107263\pi\)
\(384\) −15.9732 15.9732i −0.815131 0.815131i
\(385\) 0 0
\(386\) 0 0
\(387\) 12.0000i 0.609994i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 12.9110 12.9110i 0.652105 0.652105i
\(393\) 0 0
\(394\) 36.7321i 1.85053i
\(395\) 30.2345 30.2345i 1.52126 1.52126i
\(396\) −0.626638 + 0.626638i −0.0314897 + 0.0314897i
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) −25.8220 25.8220i −1.29434 1.29434i
\(399\) 0 0
\(400\) 53.2487i 2.66244i
\(401\) −21.9243 21.9243i −1.09485 1.09485i −0.995003 0.0998435i \(-0.968166\pi\)
−0.0998435 0.995003i \(-0.531834\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 26.1838 26.1838i 1.30108 1.30108i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) −44.4192 44.4192i −2.19371 2.19371i
\(411\) −17.8177 17.8177i −0.878881 0.878881i
\(412\) 4.28719 0.211215
\(413\) 0 0
\(414\) 0 0
\(415\) 54.1051i 2.65592i
\(416\) 0 0
\(417\) −34.6410 −1.69638
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) −3.68886 + 3.68886i −0.179571 + 0.179571i
\(423\) 19.7945 + 19.7945i 0.962443 + 0.962443i
\(424\) 0 0
\(425\) 0 0
\(426\) 12.8372i 0.621963i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 24.7846 1.19522
\(431\) −28.3136 + 28.3136i −1.36382 + 1.36382i −0.494824 + 0.868993i \(0.664767\pi\)
−0.868993 + 0.494824i \(0.835233\pi\)
\(432\) 23.1962 1.11603
\(433\) 20.7846i 0.998845i −0.866359 0.499422i \(-0.833546\pi\)
0.866359 0.499422i \(-0.166454\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000i 1.90910i 0.298057 + 0.954548i \(0.403661\pi\)
−0.298057 + 0.954548i \(0.596339\pi\)
\(440\) 8.36615 + 8.36615i 0.398841 + 0.398841i
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −75.5692 −3.58232
\(446\) 0 0
\(447\) −0.361790 + 0.361790i −0.0171121 + 0.0171121i
\(448\) 0 0
\(449\) 7.58660 + 7.58660i 0.358034 + 0.358034i 0.863088 0.505054i \(-0.168527\pi\)
−0.505054 + 0.863088i \(0.668527\pi\)
\(450\) 38.1064 + 38.1064i 1.79635 + 1.79635i
\(451\) 11.1769 0.526300
\(452\) 0 0
\(453\) 0 0
\(454\) 44.5885i 2.09264i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.6648 17.6648i 0.822730 0.822730i −0.163769 0.986499i \(-0.552365\pi\)
0.986499 + 0.163769i \(0.0523652\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −40.8833 + 40.8833i −1.88581 + 1.88581i
\(471\) 3.46410 0.159617
\(472\) 40.0526i 1.84357i
\(473\) −3.11819 + 3.11819i −0.143375 + 0.143375i
\(474\) −19.1679 + 19.1679i −0.880410 + 0.880410i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 38.8372i 1.77637i
\(479\) 23.6363 + 23.6363i 1.07997 + 1.07997i 0.996511 + 0.0834585i \(0.0265966\pi\)
0.0834585 + 0.996511i \(0.473403\pi\)
\(480\) 10.7321i 0.489849i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −2.62178 −0.119172
\(485\) 0 0
\(486\) −16.5999 + 16.5999i −0.752986 + 0.752986i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 25.5572 + 25.5572i 1.15692 + 1.15692i
\(489\) 0 0
\(490\) −43.3731 −1.95940
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 3.32707 + 3.32707i 0.149996 + 0.149996i
\(493\) 0 0
\(494\) 0 0
\(495\) −13.6077 −0.611620
\(496\) 0 0
\(497\) 0 0
\(498\) 34.3013i 1.53708i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) −5.40087 + 5.40087i −0.241534 + 0.241534i
\(501\) 14.1288 + 14.1288i 0.631229 + 0.631229i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −4.64102 −0.205912
\(509\) 8.31018 8.31018i 0.368342 0.368342i −0.498530 0.866872i \(-0.666127\pi\)
0.866872 + 0.498530i \(0.166127\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11.7137 11.7137i 0.517678 0.517678i
\(513\) 0 0
\(514\) 0 0
\(515\) 46.5490 + 46.5490i 2.05119 + 2.05119i
\(516\) −1.85641 −0.0817237
\(517\) 10.2872i 0.452430i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −6.02751 6.02751i −0.262313 0.262313i
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 32.5731 + 32.5731i 1.41355 + 1.41355i
\(532\) 0 0
\(533\) 0 0
\(534\) 47.9090 2.07322
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.45684 5.45684i 0.235043 0.235043i
\(540\) −4.05065 4.05065i −0.174312 0.174312i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) 17.3205i 0.743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −2.75640 + 2.75640i −0.117748 + 0.117748i
\(549\) −41.5692 −1.77413
\(550\) 19.8038i 0.844439i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −23.4274 23.4274i −0.995335 0.995335i
\(555\) 0 0
\(556\) 5.35898i 0.227272i
\(557\) 2.49155 + 2.49155i 0.105571 + 0.105571i 0.757919 0.652349i \(-0.226216\pi\)
−0.652349 + 0.757919i \(0.726216\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −21.0192 −0.886643
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 3.06222 3.06222i 0.128943 0.128943i
\(565\) 0 0
\(566\) 18.4443 + 18.4443i 0.775272 + 0.775272i
\(567\) 0 0
\(568\) 12.8372 0.538636
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 38.1051i 1.59465i 0.603550 + 0.797325i \(0.293752\pi\)
−0.603550 + 0.797325i \(0.706248\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 19.9808i 0.832532i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 18.1030 18.1030i 0.752986 0.752986i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −49.1244 −2.02931
\(587\) 29.4549 29.4549i 1.21573 1.21573i 0.246623 0.969111i \(-0.420679\pi\)
0.969111 0.246623i \(-0.0793210\pi\)
\(588\) 3.24871 0.133975
\(589\) 0 0
\(590\) −67.2760 + 67.2760i −2.76971 + 2.76971i
\(591\) 29.8727 29.8727i 1.22880 1.22880i
\(592\) 0 0
\(593\) 27.7429 + 27.7429i 1.13926 + 1.13926i 0.988582 + 0.150683i \(0.0481472\pi\)
0.150683 + 0.988582i \(0.451853\pi\)
\(594\) 8.62693 0.353967
\(595\) 0 0
\(596\) 0.0559690 + 0.0559690i 0.00229258 + 0.00229258i
\(597\) 42.0000i 1.71895i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −38.1064 + 38.1064i −1.55569 + 1.55569i
\(601\) 48.4974 1.97825 0.989126 0.147074i \(-0.0469854\pi\)
0.989126 + 0.147074i \(0.0469854\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −28.4665 28.4665i −1.15733 1.15733i
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 85.8564i 3.47622i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 72.2487i 2.91335i
\(616\) 0 0
\(617\) 33.1438 33.1438i 1.33432 1.33432i 0.432855 0.901464i \(-0.357506\pi\)
0.901464 0.432855i \(-0.142494\pi\)
\(618\) −29.5109 29.5109i −1.18710 1.18710i
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −57.6410 −2.30564
\(626\) 36.8886 36.8886i 1.47437 1.47437i
\(627\) 0 0
\(628\) 0.535898i 0.0213847i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) −19.1679 19.1679i −0.762457 0.762457i
\(633\) 6.00000 0.238479
\(634\) 25.2295i 1.00199i
\(635\) −50.3908 50.3908i −1.99970 1.99970i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −10.4399 + 10.4399i −0.412998 + 0.412998i
\(640\) −53.6603 −2.12111
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) −20.1563 20.1563i −0.793654 0.793654i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −16.5999 16.5999i −0.652105 0.652105i
\(649\) 16.9282i 0.664490i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −32.0024 + 32.0024i −1.24949 + 1.24949i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 2.10512i 0.0819416i
\(661\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 34.3013 1.33115
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.18573 2.18573i 0.0845686 0.0845686i
\(669\) 0 0
\(670\) 0 0
\(671\) 10.8017 + 10.8017i 0.416996 + 0.416996i
\(672\) 0 0
\(673\) 14.0000i 0.539660i 0.962908 + 0.269830i \(0.0869676\pi\)
−0.962908 + 0.269830i \(0.913032\pi\)
\(674\) 7.37772 + 7.37772i 0.284179 + 0.284179i
\(675\) 61.9808i 2.38564i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 36.2620 36.2620i 1.38956 1.38956i
\(682\) 0 0
\(683\) −4.62132 4.62132i −0.176830 0.176830i 0.613142 0.789972i \(-0.289905\pi\)
−0.789972 + 0.613142i \(0.789905\pi\)
\(684\) 0 0
\(685\) −59.8564 −2.28700
\(686\) 0 0
\(687\) 0 0
\(688\) 17.8564i 0.680769i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −58.1863 + 58.1863i −2.20713 + 2.20713i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 5.19199 5.19199i 0.195680 0.195680i
\(705\) 66.4974 2.50444
\(706\) 3.76537i 0.141712i
\(707\) 0 0
\(708\) 5.03908 5.03908i 0.189380 0.189380i
\(709\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) −21.5625 21.5625i −0.809226 0.809226i
\(711\) 31.1769 1.16923
\(712\) 47.9090i 1.79546i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −31.5847 + 31.5847i −1.17955 + 1.17955i
\(718\) 56.9808 2.12650
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 38.9624 38.9624i 1.45204 1.45204i
\(721\) 0 0
\(722\) 20.2328 + 20.2328i 0.752986 + 0.752986i
\(723\) 0 0
\(724\) −2.67949 −0.0995825
\(725\) 0 0
\(726\) 18.0470 + 18.0470i 0.669788 + 0.669788i
\(727\) 51.9615i 1.92715i −0.267445 0.963573i \(-0.586179\pi\)
0.267445 0.963573i \(-0.413821\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 6.43078i 0.237688i
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 8.51906 8.51906i 0.314444 0.314444i
\(735\) 35.2735 + 35.2735i 1.30108 + 1.30108i
\(736\) 0 0
\(737\) 0 0
\(738\) 45.8038i 1.68606i
\(739\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.3917 38.3917i 1.40846 1.40846i 0.640488 0.767968i \(-0.278732\pi\)
0.767968 0.640488i \(-0.221268\pi\)
\(744\) 0 0
\(745\) 1.21539i 0.0445285i
\(746\) 14.7554 14.7554i 0.540235 0.540235i
\(747\) −27.8958 + 27.8958i −1.02065 + 1.02065i
\(748\) 0 0
\(749\) 0 0
\(750\) 74.3538 2.71502
\(751\) 40.0000i 1.45962i 0.683650 + 0.729810i \(0.260392\pi\)
−0.683650 + 0.729810i \(0.739608\pi\)
\(752\) 29.4549 + 29.4549i 1.07411 + 1.07411i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −41.5692 −1.51086 −0.755429 0.655230i \(-0.772572\pi\)
−0.755429 + 0.655230i \(0.772572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.2239 19.2239i −0.696864 0.696864i 0.266869 0.963733i \(-0.414011\pi\)
−0.963733 + 0.266869i \(0.914011\pi\)
\(762\) 31.9465 + 31.9465i 1.15730 + 1.15730i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 25.5551i 0.923345i
\(767\) 0 0
\(768\) 10.9474 0.395032
\(769\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.14570 + 9.14570i −0.328948 + 0.328948i −0.852186 0.523238i \(-0.824724\pi\)
0.523238 + 0.852186i \(0.324724\pi\)
\(774\) 12.7786 + 12.7786i 0.459317 + 0.459317i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.42563 0.194144
\(782\) 0 0
\(783\) 0 0
\(784\) 31.2487i 1.11603i
\(785\) 5.81863 5.81863i 0.207676 0.207676i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) −4.62132 4.62132i −0.164628 0.164628i
\(789\) 0 0
\(790\) 64.3923i 2.29098i
\(791\) 0 0
\(792\) 8.62693i 0.306545i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 6.49742 0.230295
\(797\) 0 0