Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(239,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.239");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 39) |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 437.1 | ||
Root | \(-0.866025 + 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 507.437 |
Dual form | 507.2.f.b.239.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).
\(n\) | \(170\) | \(340\) |
\(\chi(n)\) | \(-1\) | \(e\left(\frac{1}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(3\) | −1.73205 | −1.00000 | ||||||||
\(4\) | 2.00000i | 1.00000i | ||||||||
\(5\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.09808 | − | 2.09808i | 0.792998 | − | 0.792998i | −0.188982 | − | 0.981981i | \(-0.560519\pi\) |
0.981981 | + | 0.188982i | \(0.0605189\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 3.00000 | 1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(12\) | − | 3.46410i | − | 1.00000i | ||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −4.00000 | −1.00000 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.73205 | + | 5.73205i | 1.31502 | + | 1.31502i | 0.917663 | + | 0.397360i | \(0.130073\pi\) |
0.397360 | + | 0.917663i | \(0.369927\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −3.63397 | + | 3.63397i | −0.792998 | + | 0.792998i | ||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 5.00000i | 1.00000i | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −5.19615 | −1.00000 | ||||||||
\(28\) | 4.19615 | + | 4.19615i | 0.792998 | + | 0.792998i | ||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 7.83013 | + | 7.83013i | 1.40633 | + | 1.40633i | 0.777714 | + | 0.628619i | \(0.216379\pi\) |
0.628619 | + | 0.777714i | \(0.283621\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 6.00000i | 1.00000i | ||||||||
\(37\) | 1.53590 | − | 1.53590i | 0.252500 | − | 0.252500i | −0.569495 | − | 0.821995i | \(-0.692861\pi\) |
0.821995 | + | 0.569495i | \(0.192861\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 1.73205i | 0.264135i | 0.991241 | + | 0.132068i | \(0.0421616\pi\) | ||||
−0.991241 | + | 0.132068i | \(0.957838\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(48\) | 6.92820 | 1.00000 | ||||||||
\(49\) | − | 1.80385i | − | 0.257693i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −9.92820 | − | 9.92820i | −1.31502 | − | 1.31502i | ||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −8.66025 | −1.10883 | −0.554416 | − | 0.832240i | \(-0.687058\pi\) | ||||
−0.554416 | + | 0.832240i | \(0.687058\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 6.29423 | − | 6.29423i | 0.792998 | − | 0.792998i | ||||
\(64\) | − | 8.00000i | − | 1.00000i | ||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −0.562178 | − | 0.562178i | −0.0686810 | − | 0.0686810i | 0.671932 | − | 0.740613i | \(-0.265465\pi\) |
−0.740613 | + | 0.671932i | \(0.765465\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 9.36603 | − | 9.36603i | 1.09621 | − | 1.09621i | 0.101361 | − | 0.994850i | \(-0.467680\pi\) |
0.994850 | − | 0.101361i | \(-0.0323196\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | − | 8.66025i | − | 1.00000i | ||||||
\(76\) | −11.4641 | + | 11.4641i | −1.31502 | + | 1.31502i | ||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 12.1244 | 1.36410 | 0.682048 | − | 0.731307i | \(-0.261089\pi\) | ||||
0.682048 | + | 0.731307i | \(0.261089\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(84\) | −7.26795 | − | 7.26795i | −0.792998 | − | 0.792998i | ||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | −13.5622 | − | 13.5622i | −1.40633 | − | 1.40633i | ||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −12.0263 | − | 12.0263i | −1.22108 | − | 1.22108i | −0.967247 | − | 0.253837i | \(-0.918307\pi\) |
−0.253837 | − | 0.967247i | \(-0.581693\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | −10.0000 | −1.00000 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 15.5885i | 1.53598i | 0.640464 | + | 0.767988i | \(0.278742\pi\) | ||||
−0.640464 | + | 0.767988i | \(0.721258\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(108\) | − | 10.3923i | − | 1.00000i | ||||||
\(109\) | −5.16987 | − | 5.16987i | −0.495184 | − | 0.495184i | 0.414751 | − | 0.909935i | \(-0.363869\pi\) |
−0.909935 | + | 0.414751i | \(0.863869\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −2.66025 | + | 2.66025i | −0.252500 | + | 0.252500i | ||||
\(112\) | −8.39230 | + | 8.39230i | −0.792998 | + | 0.792998i | ||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | − | 11.0000i | − | 1.00000i | ||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | −15.6603 | + | 15.6603i | −1.40633 | + | 1.40633i | ||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − | 1.00000i | − | 0.0887357i | −0.999015 | − | 0.0443678i | \(-0.985873\pi\) | ||
0.999015 | − | 0.0443678i | \(-0.0141274\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | − | 3.00000i | − | 0.264135i | ||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 24.0526 | 2.08562 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −7.00000 | −0.593732 | −0.296866 | − | 0.954919i | \(-0.595942\pi\) | ||||
−0.296866 | + | 0.954919i | \(0.595942\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | −12.0000 | −1.00000 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 3.12436i | 0.257693i | ||||||||
\(148\) | 3.07180 | + | 3.07180i | 0.252500 | + | 0.252500i | ||||
\(149\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 14.1244 | − | 14.1244i | 1.14942 | − | 1.14942i | 0.162758 | − | 0.986666i | \(-0.447961\pi\) |
0.986666 | − | 0.162758i | \(-0.0520389\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −11.0000 | −0.877896 | −0.438948 | − | 0.898513i | \(-0.644649\pi\) | ||||
−0.438948 | + | 0.898513i | \(0.644649\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 15.0981 | − | 15.0981i | 1.18257 | − | 1.18257i | 0.203497 | − | 0.979076i | \(-0.434769\pi\) |
0.979076 | − | 0.203497i | \(-0.0652307\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 17.1962 | + | 17.1962i | 1.31502 | + | 1.31502i | ||||
\(172\) | −3.46410 | −0.264135 | ||||||||
\(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 10.4904 | + | 10.4904i | 0.792998 | + | 0.792998i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − | 6.92820i | − | 0.514969i | −0.966282 | − | 0.257485i | \(-0.917106\pi\) | ||
0.966282 | − | 0.257485i | \(-0.0828937\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 15.0000 | 1.10883 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −10.9019 | + | 10.9019i | −0.792998 | + | 0.792998i | ||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | 13.8564i | 1.00000i | ||||||||
\(193\) | 19.2942 | − | 19.2942i | 1.38883 | − | 1.38883i | 0.561041 | − | 0.827788i | \(-0.310401\pi\) |
0.827788 | − | 0.561041i | \(-0.189599\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 3.60770 | 0.257693 | ||||||||
\(197\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 17.0000i | 1.20510i | 0.798082 | + | 0.602549i | \(0.205848\pi\) | ||||
−0.798082 | + | 0.602549i | \(0.794152\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0.973721 | + | 0.973721i | 0.0686810 | + | 0.0686810i | ||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −25.9808 | −1.78859 | −0.894295 | − | 0.447478i | \(-0.852322\pi\) | ||||
−0.894295 | + | 0.447478i | \(0.852322\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 32.8564 | 2.23044 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −16.2224 | + | 16.2224i | −1.09621 | + | 1.09621i | ||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.80385 | − | 8.80385i | −0.589549 | − | 0.589549i | 0.347960 | − | 0.937509i | \(-0.386874\pi\) |
−0.937509 | + | 0.347960i | \(0.886874\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 15.0000i | 1.00000i | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(228\) | 19.8564 | − | 19.8564i | 1.31502 | − | 1.31502i | ||||
\(229\) | −21.3923 | + | 21.3923i | −1.41364 | + | 1.41364i | −0.686743 | + | 0.726900i | \(0.740960\pi\) |
−0.726900 | + | 0.686743i | \(0.759040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | −21.0000 | −1.36410 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 6.85641 | − | 6.85641i | 0.441660 | − | 0.441660i | −0.450910 | − | 0.892570i | \(-0.648900\pi\) |
0.892570 | + | 0.450910i | \(0.148900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | −15.5885 | −1.00000 | ||||||||
\(244\) | − | 17.3205i | − | 1.10883i | ||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 12.5885 | + | 12.5885i | 0.792998 | + | 0.792998i | ||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 16.0000 | 1.00000 | ||||||||
\(257\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | − | 6.44486i | − | 0.400464i | ||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 1.12436 | − | 1.12436i | 0.0686810 | − | 0.0686810i | ||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −6.70577 | + | 6.70577i | −0.407347 | + | 0.407347i | −0.880812 | − | 0.473466i | \(-0.843003\pi\) |
0.473466 | + | 0.880812i | \(0.343003\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − | 20.7846i | − | 1.24883i | −0.781094 | − | 0.624413i | \(-0.785338\pi\) | ||
0.781094 | − | 0.624413i | \(-0.214662\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 23.4904 | + | 23.4904i | 1.40633 | + | 1.40633i | ||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 25.0000i | 1.48610i | 0.669238 | + | 0.743048i | \(0.266621\pi\) | ||||
−0.669238 | + | 0.743048i | \(0.733379\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 20.8301 | + | 20.8301i | 1.22108 | + | 1.22108i | ||||
\(292\) | 18.7321 | + | 18.7321i | 1.09621 | + | 1.09621i | ||||
\(293\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 17.3205 | 1.00000 | ||||||||
\(301\) | 3.63397 | + | 3.63397i | 0.209459 | + | 0.209459i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | −22.9282 | − | 22.9282i | −1.31502 | − | 1.31502i | ||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −16.6340 | + | 16.6340i | −0.949351 | + | 0.949351i | −0.998778 | − | 0.0494267i | \(-0.984261\pi\) |
0.0494267 | + | 0.998778i | \(0.484261\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | − | 27.0000i | − | 1.53598i | ||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −32.9090 | −1.86012 | −0.930062 | − | 0.367402i | \(-0.880247\pi\) | ||||
−0.930062 | + | 0.367402i | \(0.880247\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 24.2487i | 1.36410i | ||||||||
\(317\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 18.0000i | 1.00000i | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 8.95448 | + | 8.95448i | 0.495184 | + | 0.495184i | ||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −25.0263 | − | 25.0263i | −1.37557 | − | 1.37557i | −0.851957 | − | 0.523612i | \(-0.824584\pi\) |
−0.523612 | − | 0.851957i | \(-0.675416\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 4.60770 | − | 4.60770i | 0.252500 | − | 0.252500i | ||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 14.5359 | − | 14.5359i | 0.792998 | − | 0.792998i | ||||
\(337\) | − | 29.0000i | − | 1.57973i | −0.613280 | − | 0.789865i | \(-0.710150\pi\) | ||
0.613280 | − | 0.789865i | \(-0.289850\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 10.9019 | + | 10.9019i | 0.588649 | + | 0.588649i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −3.22243 | + | 3.22243i | −0.172493 | + | 0.172493i | −0.788074 | − | 0.615581i | \(-0.788921\pi\) |
0.615581 | + | 0.788074i | \(0.288921\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 46.7128i | 2.45857i | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 19.0526i | 1.00000i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 31.0000 | 1.61819 | 0.809093 | − | 0.587680i | \(-0.199959\pi\) | ||||
0.809093 | + | 0.587680i | \(0.199959\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 27.1244 | − | 27.1244i | 1.40633 | − | 1.40633i | ||||
\(373\) | 36.3731 | 1.88333 | 0.941663 | − | 0.336557i | \(-0.109263\pi\) | ||||
0.941663 | + | 0.336557i | \(0.109263\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 12.4378 | + | 12.4378i | 0.638888 | + | 0.638888i | 0.950281 | − | 0.311393i | \(-0.100796\pi\) |
−0.311393 | + | 0.950281i | \(0.600796\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 1.73205i | 0.0887357i | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 5.19615i | 0.264135i | ||||||||
\(388\) | 24.0526 | − | 24.0526i | 1.22108 | − | 1.22108i | ||||
\(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −20.4186 | + | 20.4186i | −1.02478 | + | 1.02478i | −0.0250943 | + | 0.999685i | \(0.507989\pi\) |
−0.999685 | + | 0.0250943i | \(0.992011\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −41.6603 | −2.08562 | ||||||||
\(400\) | − | 20.0000i | − | 1.00000i | ||||||
\(401\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −2.50962 | − | 2.50962i | −0.124093 | − | 0.124093i | 0.642333 | − | 0.766426i | \(-0.277967\pi\) |
−0.766426 | + | 0.642333i | \(0.777967\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | −31.1769 | −1.53598 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 12.1244 | 0.593732 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −27.6865 | − | 27.6865i | −1.34936 | − | 1.34936i | −0.886357 | − | 0.463002i | \(-0.846772\pi\) |
−0.463002 | − | 0.886357i | \(-0.653228\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −18.1699 | + | 18.1699i | −0.879302 | + | 0.879302i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(432\) | 20.7846 | 1.00000 | ||||||||
\(433\) | − | 35.0000i | − | 1.68199i | −0.541041 | − | 0.840996i | \(-0.681970\pi\) | ||
0.541041 | − | 0.840996i | \(-0.318030\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 10.3397 | − | 10.3397i | 0.495184 | − | 0.495184i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − | 39.8372i | − | 1.90132i | −0.310228 | − | 0.950662i | \(-0.600405\pi\) | ||
0.310228 | − | 0.950662i | \(-0.399595\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | − | 5.41154i | − | 0.257693i | ||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(444\) | −5.32051 | − | 5.32051i | −0.252500 | − | 0.252500i | ||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | −16.7846 | − | 16.7846i | −0.792998 | − | 0.792998i | ||||
\(449\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | −24.4641 | + | 24.4641i | −1.14942 | + | 1.14942i | ||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −26.5622 | − | 26.5622i | −1.24253 | − | 1.24253i | −0.958950 | − | 0.283577i | \(-0.908479\pi\) |
−0.283577 | − | 0.958950i | \(-0.591521\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 22.3660 | − | 22.3660i | 1.03944 | − | 1.03944i | 0.0402476 | − | 0.999190i | \(-0.487185\pi\) |
0.999190 | − | 0.0402476i | \(-0.0128147\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −2.35898 | −0.108928 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 19.0526 | 0.877896 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −28.6603 | + | 28.6603i | −1.31502 | + | 1.31502i | ||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 22.0000 | 1.00000 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −20.2679 | − | 20.2679i | −0.918428 | − | 0.918428i | 0.0784867 | − | 0.996915i | \(-0.474991\pi\) |
−0.996915 | + | 0.0784867i | \(0.974991\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −26.1506 | + | 26.1506i | −1.18257 | + | 1.18257i | ||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −31.3205 | − | 31.3205i | −1.40633 | − | 1.40633i | ||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −0.411543 | − | 0.411543i | −0.0184232 | − | 0.0184232i | 0.697835 | − | 0.716258i | \(-0.254147\pi\) |
−0.716258 | + | 0.697835i | \(0.754147\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 2.00000 | 0.0887357 | ||||||||
\(509\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | − | 39.3013i | − | 1.73859i | ||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | −29.7846 | − | 29.7846i | −1.31502 | − | 1.31502i | ||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 6.00000 | 0.264135 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −8.00000 | −0.349816 | −0.174908 | − | 0.984585i | \(-0.555963\pi\) | ||||
−0.174908 | + | 0.984585i | \(0.555963\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | −18.1699 | − | 18.1699i | −0.792998 | − | 0.792998i | ||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 48.1051i | 2.08562i | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −13.1506 | + | 13.1506i | −0.565390 | + | 0.565390i | −0.930834 | − | 0.365444i | \(-0.880917\pi\) |
0.365444 | + | 0.930834i | \(0.380917\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 12.0000i | 0.514969i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 41.0000 | 1.75303 | 0.876517 | − | 0.481371i | \(-0.159861\pi\) | ||||
0.876517 | + | 0.481371i | \(0.159861\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −25.9808 | −1.10883 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 25.4378 | − | 25.4378i | 1.08173 | − | 1.08173i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | − | 14.0000i | − | 0.593732i | ||||||
\(557\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 18.8827 | − | 18.8827i | 0.792998 | − | 0.792998i | ||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − | 16.0000i | − | 0.669579i | −0.942293 | − | 0.334790i | \(-0.891335\pi\) | ||
0.942293 | − | 0.334790i | \(-0.108665\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | − | 24.0000i | − | 1.00000i | ||||||
\(577\) | 16.0718 | + | 16.0718i | 0.669078 | + | 0.669078i | 0.957503 | − | 0.288425i | \(-0.0931316\pi\) |
−0.288425 | + | 0.957503i | \(0.593132\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −33.4186 | + | 33.4186i | −1.38883 | + | 1.38883i | ||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(588\) | −6.24871 | −0.257693 | ||||||||
\(589\) | 89.7654i | 3.69872i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −6.14359 | + | 6.14359i | −0.252500 | + | 0.252500i | ||||
\(593\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − | 29.4449i | − | 1.20510i | ||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 41.5692 | 1.69564 | 0.847822 | − | 0.530281i | \(-0.177914\pi\) | ||||
0.847822 | + | 0.530281i | \(0.177914\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −1.68653 | − | 1.68653i | −0.0686810 | − | 0.0686810i | ||||
\(604\) | 28.2487 | + | 28.2487i | 1.14942 | + | 1.14942i | ||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −20.0000 | −0.811775 | −0.405887 | − | 0.913923i | \(-0.633038\pi\) | ||||
−0.405887 | + | 0.913923i | \(0.633038\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 34.9545 | + | 34.9545i | 1.41180 | + | 1.41180i | 0.747208 | + | 0.664590i | \(0.231394\pi\) |
0.664590 | + | 0.747208i | \(0.268606\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 31.8827 | − | 31.8827i | 1.28147 | − | 1.28147i | 0.341644 | − | 0.939829i | \(-0.389016\pi\) |
0.939829 | − | 0.341644i | \(-0.110984\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −25.0000 | −1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | − | 22.0000i | − | 0.877896i | ||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 24.6147 | − | 24.6147i | 0.979897 | − | 0.979897i | −0.0199047 | − | 0.999802i | \(-0.506336\pi\) |
0.999802 | + | 0.0199047i | \(0.00633628\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 45.0000 | 1.78859 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 13.9737 | + | 13.9737i | 0.551070 | + | 0.551070i | 0.926750 | − | 0.375680i | \(-0.122591\pi\) |
−0.375680 | + | 0.926750i | \(0.622591\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −56.9090 | −2.23044 | ||||||||
\(652\) | 30.1962 | + | 30.1962i | 1.18257 | + | 1.18257i | ||||
\(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 28.0981 | − | 28.0981i | 1.09621 | − | 1.09621i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 32.2942 | − | 32.2942i | 1.25610 | − | 1.25610i | 0.303160 | − | 0.952940i | \(-0.401958\pi\) |
0.952940 | − | 0.303160i | \(-0.0980418\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 15.2487 | + | 15.2487i | 0.589549 | + | 0.589549i | ||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 50.2295i | 1.93620i | 0.250557 | + | 0.968102i | \(0.419386\pi\) | ||||
−0.250557 | + | 0.968102i | \(0.580614\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | − | 25.9808i | − | 1.00000i | ||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −50.4641 | −1.93663 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(684\) | −34.3923 | + | 34.3923i | −1.31502 | + | 1.31502i | ||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 37.0526 | − | 37.0526i | 1.41364 | − | 1.41364i | ||||
\(688\) | − | 6.92820i | − | 0.264135i | ||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −4.04552 | − | 4.04552i | −0.153899 | − | 0.153899i | 0.625958 | − | 0.779857i | \(-0.284708\pi\) |
−0.779857 | + | 0.625958i | \(0.784708\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | −20.9808 | + | 20.9808i | −0.792998 | + | 0.792998i | ||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 17.6077 | 0.664087 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −23.9019 | + | 23.9019i | −0.897656 | + | 0.897656i | −0.995228 | − | 0.0975728i | \(-0.968892\pi\) |
0.0975728 | + | 0.995228i | \(0.468892\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 36.3731 | 1.36410 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 32.7058 | + | 32.7058i | 1.21803 | + | 1.21803i | ||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −11.8756 | + | 11.8756i | −0.441660 | + | 0.441660i | ||||
\(724\) | 13.8564 | 0.514969 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 49.0000i | 1.81731i | 0.417548 | + | 0.908655i | \(0.362889\pi\) | ||||
−0.417548 | + | 0.908655i | \(0.637111\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 27.0000 | 1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 30.0000i | 1.10883i | ||||||||
\(733\) | 30.3468 | + | 30.3468i | 1.12088 | + | 1.12088i | 0.991609 | + | 0.129275i | \(0.0412651\pi\) |
0.129275 | + | 0.991609i | \(0.458735\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −33.9808 | + | 33.9808i | −1.25000 | + | 1.25000i | −0.294285 | + | 0.955718i | \(0.595081\pi\) |
−0.955718 | + | 0.294285i | \(0.904919\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − | 17.3205i | − | 0.632034i | −0.948753 | − | 0.316017i | \(-0.897654\pi\) | ||
0.948753 | − | 0.316017i | \(-0.102346\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | −21.8038 | − | 21.8038i | −0.792998 | − | 0.792998i | ||||
\(757\) | −48.4974 | −1.76267 | −0.881334 | − | 0.472493i | \(-0.843354\pi\) | ||||
−0.881334 | + | 0.472493i | \(0.843354\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −21.6936 | −0.785360 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | −27.7128 | −1.00000 | ||||||||
\(769\) | 26.7128 | + | 26.7128i | 0.963289 | + | 0.963289i | 0.999350 | − | 0.0360609i | \(-0.0114810\pi\) |
−0.0360609 | + | 0.999350i | \(0.511481\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 38.5885 | + | 38.5885i | 1.38883 | + | 1.38883i | ||||
\(773\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −39.1506 | + | 39.1506i | −1.40633 | + | 1.40633i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 11.1628i | 0.400464i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 7.21539i | 0.257693i | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 37.6147 | − | 37.6147i | 1.34082 | − | 1.34082i | 0.445577 | − | 0.895244i | \(-0.352999\pi\) |
0.895244 | − | 0.445577i | \(-0.147001\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | −34.0000 | −1.20510 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 |