Properties

Label 507.2.f.a.437.2
Level $507$
Weight $2$
Character 507.437
Analytic conductor $4.048$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(239,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.2
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 507.437
Dual form 507.2.f.a.239.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.00000 + 1.41421i) q^{3} +1.00000i q^{4} +(-1.41421 + 1.41421i) q^{5} +(0.292893 + 1.70711i) q^{6} +(-1.00000 + 1.00000i) q^{7} +(2.12132 + 2.12132i) q^{8} +(-1.00000 - 2.82843i) q^{9} +2.00000i q^{10} +(-2.82843 - 2.82843i) q^{11} +(-1.41421 - 1.00000i) q^{12} +1.41421i q^{14} +(-0.585786 - 3.41421i) q^{15} +1.00000 q^{16} +(-2.70711 - 1.29289i) q^{18} +(-1.00000 - 1.00000i) q^{19} +(-1.41421 - 1.41421i) q^{20} +(-0.414214 - 2.41421i) q^{21} -4.00000 q^{22} -8.48528 q^{23} +(-5.12132 + 0.878680i) q^{24} +1.00000i q^{25} +(5.00000 + 1.41421i) q^{27} +(-1.00000 - 1.00000i) q^{28} -2.82843i q^{29} +(-2.82843 - 2.00000i) q^{30} +(5.00000 + 5.00000i) q^{31} +(-3.53553 + 3.53553i) q^{32} +(6.82843 - 1.17157i) q^{33} -2.82843i q^{35} +(2.82843 - 1.00000i) q^{36} +(-1.00000 + 1.00000i) q^{37} -1.41421 q^{38} -6.00000 q^{40} +(-1.41421 + 1.41421i) q^{41} +(-2.00000 - 1.41421i) q^{42} +6.00000i q^{43} +(2.82843 - 2.82843i) q^{44} +(5.41421 + 2.58579i) q^{45} +(-6.00000 + 6.00000i) q^{46} +(-2.82843 - 2.82843i) q^{47} +(-1.00000 + 1.41421i) q^{48} +5.00000i q^{49} +(0.707107 + 0.707107i) q^{50} +5.65685i q^{53} +(4.53553 - 2.53553i) q^{54} +8.00000 q^{55} -4.24264 q^{56} +(2.41421 - 0.414214i) q^{57} +(-2.00000 - 2.00000i) q^{58} +(-2.82843 - 2.82843i) q^{59} +(3.41421 - 0.585786i) q^{60} +8.00000 q^{61} +7.07107 q^{62} +(3.82843 + 1.82843i) q^{63} +7.00000i q^{64} +(4.00000 - 5.65685i) q^{66} +(5.00000 + 5.00000i) q^{67} +(8.48528 - 12.0000i) q^{69} +(-2.00000 - 2.00000i) q^{70} +(2.82843 - 2.82843i) q^{71} +(3.87868 - 8.12132i) q^{72} +(-1.00000 + 1.00000i) q^{73} +1.41421i q^{74} +(-1.41421 - 1.00000i) q^{75} +(1.00000 - 1.00000i) q^{76} +5.65685 q^{77} -10.0000 q^{79} +(-1.41421 + 1.41421i) q^{80} +(-7.00000 + 5.65685i) q^{81} +2.00000i q^{82} +(-5.65685 + 5.65685i) q^{83} +(2.41421 - 0.414214i) q^{84} +(4.24264 + 4.24264i) q^{86} +(4.00000 + 2.82843i) q^{87} -12.0000i q^{88} +(9.89949 + 9.89949i) q^{89} +(5.65685 - 2.00000i) q^{90} -8.48528i q^{92} +(-12.0711 + 2.07107i) q^{93} -4.00000 q^{94} +2.82843 q^{95} +(-1.46447 - 8.53553i) q^{96} +(-7.00000 - 7.00000i) q^{97} +(3.53553 + 3.53553i) q^{98} +(-5.17157 + 10.8284i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} - 4 q^{7} - 4 q^{9} - 8 q^{15} + 4 q^{16} - 8 q^{18} - 4 q^{19} + 4 q^{21} - 16 q^{22} - 12 q^{24} + 20 q^{27} - 4 q^{28} + 20 q^{31} + 16 q^{33} - 4 q^{37} - 24 q^{40} - 8 q^{42}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i −0.411438 0.911438i \(-0.634973\pi\)
0.911438 + 0.411438i \(0.134973\pi\)
\(3\) −1.00000 + 1.41421i −0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) −1.41421 + 1.41421i −0.632456 + 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0.292893 + 1.70711i 0.119573 + 0.696923i
\(7\) −1.00000 + 1.00000i −0.377964 + 0.377964i −0.870367 0.492403i \(-0.836119\pi\)
0.492403 + 0.870367i \(0.336119\pi\)
\(8\) 2.12132 + 2.12132i 0.750000 + 0.750000i
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 2.00000i 0.632456i
\(11\) −2.82843 2.82843i −0.852803 0.852803i 0.137675 0.990478i \(-0.456037\pi\)
−0.990478 + 0.137675i \(0.956037\pi\)
\(12\) −1.41421 1.00000i −0.408248 0.288675i
\(13\) 0 0
\(14\) 1.41421i 0.377964i
\(15\) −0.585786 3.41421i −0.151249 0.881546i
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −2.70711 1.29289i −0.638071 0.304738i
\(19\) −1.00000 1.00000i −0.229416 0.229416i 0.583033 0.812449i \(-0.301866\pi\)
−0.812449 + 0.583033i \(0.801866\pi\)
\(20\) −1.41421 1.41421i −0.316228 0.316228i
\(21\) −0.414214 2.41421i −0.0903888 0.526825i
\(22\) −4.00000 −0.852803
\(23\) −8.48528 −1.76930 −0.884652 0.466252i \(-0.845604\pi\)
−0.884652 + 0.466252i \(0.845604\pi\)
\(24\) −5.12132 + 0.878680i −1.04539 + 0.179360i
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) −1.00000 1.00000i −0.188982 0.188982i
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) −2.82843 2.00000i −0.516398 0.365148i
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) −3.53553 + 3.53553i −0.625000 + 0.625000i
\(33\) 6.82843 1.17157i 1.18868 0.203945i
\(34\) 0 0
\(35\) 2.82843i 0.478091i
\(36\) 2.82843 1.00000i 0.471405 0.166667i
\(37\) −1.00000 + 1.00000i −0.164399 + 0.164399i −0.784512 0.620113i \(-0.787087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(38\) −1.41421 −0.229416
\(39\) 0 0
\(40\) −6.00000 −0.948683
\(41\) −1.41421 + 1.41421i −0.220863 + 0.220863i −0.808862 0.587999i \(-0.799916\pi\)
0.587999 + 0.808862i \(0.299916\pi\)
\(42\) −2.00000 1.41421i −0.308607 0.218218i
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 2.82843 2.82843i 0.426401 0.426401i
\(45\) 5.41421 + 2.58579i 0.807103 + 0.385466i
\(46\) −6.00000 + 6.00000i −0.884652 + 0.884652i
\(47\) −2.82843 2.82843i −0.412568 0.412568i 0.470064 0.882632i \(-0.344231\pi\)
−0.882632 + 0.470064i \(0.844231\pi\)
\(48\) −1.00000 + 1.41421i −0.144338 + 0.204124i
\(49\) 5.00000i 0.714286i
\(50\) 0.707107 + 0.707107i 0.100000 + 0.100000i
\(51\) 0 0
\(52\) 0 0
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) 4.53553 2.53553i 0.617208 0.345042i
\(55\) 8.00000 1.07872
\(56\) −4.24264 −0.566947
\(57\) 2.41421 0.414214i 0.319770 0.0548639i
\(58\) −2.00000 2.00000i −0.262613 0.262613i
\(59\) −2.82843 2.82843i −0.368230 0.368230i 0.498601 0.866831i \(-0.333847\pi\)
−0.866831 + 0.498601i \(0.833847\pi\)
\(60\) 3.41421 0.585786i 0.440773 0.0756247i
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 7.07107 0.898027
\(63\) 3.82843 + 1.82843i 0.482336 + 0.230360i
\(64\) 7.00000i 0.875000i
\(65\) 0 0
\(66\) 4.00000 5.65685i 0.492366 0.696311i
\(67\) 5.00000 + 5.00000i 0.610847 + 0.610847i 0.943167 0.332320i \(-0.107831\pi\)
−0.332320 + 0.943167i \(0.607831\pi\)
\(68\) 0 0
\(69\) 8.48528 12.0000i 1.02151 1.44463i
\(70\) −2.00000 2.00000i −0.239046 0.239046i
\(71\) 2.82843 2.82843i 0.335673 0.335673i −0.519063 0.854736i \(-0.673719\pi\)
0.854736 + 0.519063i \(0.173719\pi\)
\(72\) 3.87868 8.12132i 0.457107 0.957107i
\(73\) −1.00000 + 1.00000i −0.117041 + 0.117041i −0.763202 0.646160i \(-0.776374\pi\)
0.646160 + 0.763202i \(0.276374\pi\)
\(74\) 1.41421i 0.164399i
\(75\) −1.41421 1.00000i −0.163299 0.115470i
\(76\) 1.00000 1.00000i 0.114708 0.114708i
\(77\) 5.65685 0.644658
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −1.41421 + 1.41421i −0.158114 + 0.158114i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 2.00000i 0.220863i
\(83\) −5.65685 + 5.65685i −0.620920 + 0.620920i −0.945767 0.324846i \(-0.894687\pi\)
0.324846 + 0.945767i \(0.394687\pi\)
\(84\) 2.41421 0.414214i 0.263412 0.0451944i
\(85\) 0 0
\(86\) 4.24264 + 4.24264i 0.457496 + 0.457496i
\(87\) 4.00000 + 2.82843i 0.428845 + 0.303239i
\(88\) 12.0000i 1.27920i
\(89\) 9.89949 + 9.89949i 1.04934 + 1.04934i 0.998718 + 0.0506267i \(0.0161219\pi\)
0.0506267 + 0.998718i \(0.483878\pi\)
\(90\) 5.65685 2.00000i 0.596285 0.210819i
\(91\) 0 0
\(92\) 8.48528i 0.884652i
\(93\) −12.0711 + 2.07107i −1.25171 + 0.214760i
\(94\) −4.00000 −0.412568
\(95\) 2.82843 0.290191
\(96\) −1.46447 8.53553i −0.149466 0.871154i
\(97\) −7.00000 7.00000i −0.710742 0.710742i 0.255948 0.966691i \(-0.417612\pi\)
−0.966691 + 0.255948i \(0.917612\pi\)
\(98\) 3.53553 + 3.53553i 0.357143 + 0.357143i
\(99\) −5.17157 + 10.8284i −0.519763 + 1.08830i
\(100\) −1.00000 −0.100000
\(101\) 8.48528 0.844317 0.422159 0.906522i \(-0.361273\pi\)
0.422159 + 0.906522i \(0.361273\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 0 0
\(105\) 4.00000 + 2.82843i 0.390360 + 0.276026i
\(106\) 4.00000 + 4.00000i 0.388514 + 0.388514i
\(107\) 5.65685i 0.546869i 0.961891 + 0.273434i \(0.0881596\pi\)
−0.961891 + 0.273434i \(0.911840\pi\)
\(108\) −1.41421 + 5.00000i −0.136083 + 0.481125i
\(109\) −1.00000 1.00000i −0.0957826 0.0957826i 0.657592 0.753374i \(-0.271575\pi\)
−0.753374 + 0.657592i \(0.771575\pi\)
\(110\) 5.65685 5.65685i 0.539360 0.539360i
\(111\) −0.414214 2.41421i −0.0393154 0.229147i
\(112\) −1.00000 + 1.00000i −0.0944911 + 0.0944911i
\(113\) 14.1421i 1.33038i 0.746674 + 0.665190i \(0.231650\pi\)
−0.746674 + 0.665190i \(0.768350\pi\)
\(114\) 1.41421 2.00000i 0.132453 0.187317i
\(115\) 12.0000 12.0000i 1.11901 1.11901i
\(116\) 2.82843 0.262613
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 6.00000 8.48528i 0.547723 0.774597i
\(121\) 5.00000i 0.454545i
\(122\) 5.65685 5.65685i 0.512148 0.512148i
\(123\) −0.585786 3.41421i −0.0528186 0.307849i
\(124\) −5.00000 + 5.00000i −0.449013 + 0.449013i
\(125\) −8.48528 8.48528i −0.758947 0.758947i
\(126\) 4.00000 1.41421i 0.356348 0.125988i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −2.12132 2.12132i −0.187500 0.187500i
\(129\) −8.48528 6.00000i −0.747087 0.528271i
\(130\) 0 0
\(131\) 11.3137i 0.988483i −0.869325 0.494242i \(-0.835446\pi\)
0.869325 0.494242i \(-0.164554\pi\)
\(132\) 1.17157 + 6.82843i 0.101972 + 0.594338i
\(133\) 2.00000 0.173422
\(134\) 7.07107 0.610847
\(135\) −9.07107 + 5.07107i −0.780713 + 0.436448i
\(136\) 0 0
\(137\) 9.89949 + 9.89949i 0.845771 + 0.845771i 0.989602 0.143831i \(-0.0459423\pi\)
−0.143831 + 0.989602i \(0.545942\pi\)
\(138\) −2.48528 14.4853i −0.211561 1.23307i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 2.82843 0.239046
\(141\) 6.82843 1.17157i 0.575057 0.0986642i
\(142\) 4.00000i 0.335673i
\(143\) 0 0
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) 4.00000 + 4.00000i 0.332182 + 0.332182i
\(146\) 1.41421i 0.117041i
\(147\) −7.07107 5.00000i −0.583212 0.412393i
\(148\) −1.00000 1.00000i −0.0821995 0.0821995i
\(149\) −1.41421 + 1.41421i −0.115857 + 0.115857i −0.762658 0.646802i \(-0.776106\pi\)
0.646802 + 0.762658i \(0.276106\pi\)
\(150\) −1.70711 + 0.292893i −0.139385 + 0.0239146i
\(151\) −1.00000 + 1.00000i −0.0813788 + 0.0813788i −0.746625 0.665246i \(-0.768327\pi\)
0.665246 + 0.746625i \(0.268327\pi\)
\(152\) 4.24264i 0.344124i
\(153\) 0 0
\(154\) 4.00000 4.00000i 0.322329 0.322329i
\(155\) −14.1421 −1.13592
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −7.07107 + 7.07107i −0.562544 + 0.562544i
\(159\) −8.00000 5.65685i −0.634441 0.448618i
\(160\) 10.0000i 0.790569i
\(161\) 8.48528 8.48528i 0.668734 0.668734i
\(162\) −0.949747 + 8.94975i −0.0746192 + 0.703159i
\(163\) −1.00000 + 1.00000i −0.0783260 + 0.0783260i −0.745184 0.666858i \(-0.767639\pi\)
0.666858 + 0.745184i \(0.267639\pi\)
\(164\) −1.41421 1.41421i −0.110432 0.110432i
\(165\) −8.00000 + 11.3137i −0.622799 + 0.880771i
\(166\) 8.00000i 0.620920i
\(167\) −2.82843 2.82843i −0.218870 0.218870i 0.589152 0.808022i \(-0.299462\pi\)
−0.808022 + 0.589152i \(0.799462\pi\)
\(168\) 4.24264 6.00000i 0.327327 0.462910i
\(169\) 0 0
\(170\) 0 0
\(171\) −1.82843 + 3.82843i −0.139823 + 0.292767i
\(172\) −6.00000 −0.457496
\(173\) 8.48528 0.645124 0.322562 0.946548i \(-0.395456\pi\)
0.322562 + 0.946548i \(0.395456\pi\)
\(174\) 4.82843 0.828427i 0.366042 0.0628029i
\(175\) −1.00000 1.00000i −0.0755929 0.0755929i
\(176\) −2.82843 2.82843i −0.213201 0.213201i
\(177\) 6.82843 1.17157i 0.513256 0.0880608i
\(178\) 14.0000 1.04934
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −2.58579 + 5.41421i −0.192733 + 0.403552i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −8.00000 + 11.3137i −0.591377 + 0.836333i
\(184\) −18.0000 18.0000i −1.32698 1.32698i
\(185\) 2.82843i 0.207950i
\(186\) −7.07107 + 10.0000i −0.518476 + 0.733236i
\(187\) 0 0
\(188\) 2.82843 2.82843i 0.206284 0.206284i
\(189\) −6.41421 + 3.58579i −0.466565 + 0.260828i
\(190\) 2.00000 2.00000i 0.145095 0.145095i
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) −9.89949 7.00000i −0.714435 0.505181i
\(193\) −19.0000 + 19.0000i −1.36765 + 1.36765i −0.503871 + 0.863779i \(0.668091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) −9.89949 −0.710742
\(195\) 0 0
\(196\) −5.00000 −0.357143
\(197\) 15.5563 15.5563i 1.10834 1.10834i 0.114976 0.993368i \(-0.463321\pi\)
0.993368 0.114976i \(-0.0366790\pi\)
\(198\) 4.00000 + 11.3137i 0.284268 + 0.804030i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2.12132 + 2.12132i −0.150000 + 0.150000i
\(201\) −12.0711 + 2.07107i −0.851427 + 0.146082i
\(202\) 6.00000 6.00000i 0.422159 0.422159i
\(203\) 2.82843 + 2.82843i 0.198517 + 0.198517i
\(204\) 0 0
\(205\) 4.00000i 0.279372i
\(206\) −4.24264 4.24264i −0.295599 0.295599i
\(207\) 8.48528 + 24.0000i 0.589768 + 1.66812i
\(208\) 0 0
\(209\) 5.65685i 0.391293i
\(210\) 4.82843 0.828427i 0.333193 0.0571669i
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) −5.65685 −0.388514
\(213\) 1.17157 + 6.82843i 0.0802749 + 0.467876i
\(214\) 4.00000 + 4.00000i 0.273434 + 0.273434i
\(215\) −8.48528 8.48528i −0.578691 0.578691i
\(216\) 7.60660 + 13.6066i 0.517564 + 0.925812i
\(217\) −10.0000 −0.678844
\(218\) −1.41421 −0.0957826
\(219\) −0.414214 2.41421i −0.0279900 0.163137i
\(220\) 8.00000i 0.539360i
\(221\) 0 0
\(222\) −2.00000 1.41421i −0.134231 0.0949158i
\(223\) 11.0000 + 11.0000i 0.736614 + 0.736614i 0.971921 0.235307i \(-0.0756095\pi\)
−0.235307 + 0.971921i \(0.575609\pi\)
\(224\) 7.07107i 0.472456i
\(225\) 2.82843 1.00000i 0.188562 0.0666667i
\(226\) 10.0000 + 10.0000i 0.665190 + 0.665190i
\(227\) −5.65685 + 5.65685i −0.375459 + 0.375459i −0.869461 0.494002i \(-0.835534\pi\)
0.494002 + 0.869461i \(0.335534\pi\)
\(228\) 0.414214 + 2.41421i 0.0274320 + 0.159885i
\(229\) −1.00000 + 1.00000i −0.0660819 + 0.0660819i −0.739375 0.673293i \(-0.764879\pi\)
0.673293 + 0.739375i \(0.264879\pi\)
\(230\) 16.9706i 1.11901i
\(231\) −5.65685 + 8.00000i −0.372194 + 0.526361i
\(232\) 6.00000 6.00000i 0.393919 0.393919i
\(233\) 25.4558 1.66767 0.833834 0.552015i \(-0.186141\pi\)
0.833834 + 0.552015i \(0.186141\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 2.82843 2.82843i 0.184115 0.184115i
\(237\) 10.0000 14.1421i 0.649570 0.918630i
\(238\) 0 0
\(239\) −14.1421 + 14.1421i −0.914779 + 0.914779i −0.996643 0.0818647i \(-0.973912\pi\)
0.0818647 + 0.996643i \(0.473912\pi\)
\(240\) −0.585786 3.41421i −0.0378124 0.220387i
\(241\) 17.0000 17.0000i 1.09507 1.09507i 0.100088 0.994979i \(-0.468088\pi\)
0.994979 0.100088i \(-0.0319123\pi\)
\(242\) 3.53553 + 3.53553i 0.227273 + 0.227273i
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 8.00000i 0.512148i
\(245\) −7.07107 7.07107i −0.451754 0.451754i
\(246\) −2.82843 2.00000i −0.180334 0.127515i
\(247\) 0 0
\(248\) 21.2132i 1.34704i
\(249\) −2.34315 13.6569i −0.148491 0.865468i
\(250\) −12.0000 −0.758947
\(251\) −25.4558 −1.60676 −0.803379 0.595468i \(-0.796967\pi\)
−0.803379 + 0.595468i \(0.796967\pi\)
\(252\) −1.82843 + 3.82843i −0.115180 + 0.241168i
\(253\) 24.0000 + 24.0000i 1.50887 + 1.50887i
\(254\) 0 0
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −8.48528 −0.529297 −0.264649 0.964345i \(-0.585256\pi\)
−0.264649 + 0.964345i \(0.585256\pi\)
\(258\) −10.2426 + 1.75736i −0.637679 + 0.109408i
\(259\) 2.00000i 0.124274i
\(260\) 0 0
\(261\) −8.00000 + 2.82843i −0.495188 + 0.175075i
\(262\) −8.00000 8.00000i −0.494242 0.494242i
\(263\) 22.6274i 1.39527i 0.716455 + 0.697633i \(0.245763\pi\)
−0.716455 + 0.697633i \(0.754237\pi\)
\(264\) 16.9706 + 12.0000i 1.04447 + 0.738549i
\(265\) −8.00000 8.00000i −0.491436 0.491436i
\(266\) 1.41421 1.41421i 0.0867110 0.0867110i
\(267\) −23.8995 + 4.10051i −1.46263 + 0.250947i
\(268\) −5.00000 + 5.00000i −0.305424 + 0.305424i
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) −2.82843 + 10.0000i −0.172133 + 0.608581i
\(271\) −19.0000 + 19.0000i −1.15417 + 1.15417i −0.168459 + 0.985709i \(0.553879\pi\)
−0.985709 + 0.168459i \(0.946121\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 2.82843 2.82843i 0.170561 0.170561i
\(276\) 12.0000 + 8.48528i 0.722315 + 0.510754i
\(277\) 12.0000i 0.721010i −0.932757 0.360505i \(-0.882604\pi\)
0.932757 0.360505i \(-0.117396\pi\)
\(278\) −2.82843 + 2.82843i −0.169638 + 0.169638i
\(279\) 9.14214 19.1421i 0.547325 1.14601i
\(280\) 6.00000 6.00000i 0.358569 0.358569i
\(281\) 9.89949 + 9.89949i 0.590554 + 0.590554i 0.937781 0.347227i \(-0.112877\pi\)
−0.347227 + 0.937781i \(0.612877\pi\)
\(282\) 4.00000 5.65685i 0.238197 0.336861i
\(283\) 12.0000i 0.713326i 0.934233 + 0.356663i \(0.116086\pi\)
−0.934233 + 0.356663i \(0.883914\pi\)
\(284\) 2.82843 + 2.82843i 0.167836 + 0.167836i
\(285\) −2.82843 + 4.00000i −0.167542 + 0.236940i
\(286\) 0 0
\(287\) 2.82843i 0.166957i
\(288\) 13.5355 + 6.46447i 0.797589 + 0.380922i
\(289\) −17.0000 −1.00000
\(290\) 5.65685 0.332182
\(291\) 16.8995 2.89949i 0.990666 0.169971i
\(292\) −1.00000 1.00000i −0.0585206 0.0585206i
\(293\) 9.89949 + 9.89949i 0.578335 + 0.578335i 0.934444 0.356110i \(-0.115897\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(294\) −8.53553 + 1.46447i −0.497802 + 0.0854094i
\(295\) 8.00000 0.465778
\(296\) −4.24264 −0.246598
\(297\) −10.1421 18.1421i −0.588506 1.05271i
\(298\) 2.00000i 0.115857i
\(299\) 0 0
\(300\) 1.00000 1.41421i 0.0577350 0.0816497i
\(301\) −6.00000 6.00000i −0.345834 0.345834i
\(302\) 1.41421i 0.0813788i
\(303\) −8.48528 + 12.0000i −0.487467 + 0.689382i
\(304\) −1.00000 1.00000i −0.0573539 0.0573539i
\(305\) −11.3137 + 11.3137i −0.647821 + 0.647821i
\(306\) 0 0
\(307\) 17.0000 17.0000i 0.970241 0.970241i −0.0293286 0.999570i \(-0.509337\pi\)
0.999570 + 0.0293286i \(0.00933691\pi\)
\(308\) 5.65685i 0.322329i
\(309\) 8.48528 + 6.00000i 0.482711 + 0.341328i
\(310\) −10.0000 + 10.0000i −0.567962 + 0.567962i
\(311\) −8.48528 −0.481156 −0.240578 0.970630i \(-0.577337\pi\)
−0.240578 + 0.970630i \(0.577337\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 9.89949 9.89949i 0.558661 0.558661i
\(315\) −8.00000 + 2.82843i −0.450749 + 0.159364i
\(316\) 10.0000i 0.562544i
\(317\) 7.07107 7.07107i 0.397151 0.397151i −0.480076 0.877227i \(-0.659391\pi\)
0.877227 + 0.480076i \(0.159391\pi\)
\(318\) −9.65685 + 1.65685i −0.541529 + 0.0929118i
\(319\) −8.00000 + 8.00000i −0.447914 + 0.447914i
\(320\) −9.89949 9.89949i −0.553399 0.553399i
\(321\) −8.00000 5.65685i −0.446516 0.315735i
\(322\) 12.0000i 0.668734i
\(323\) 0 0
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) 0 0
\(326\) 1.41421i 0.0783260i
\(327\) 2.41421 0.414214i 0.133506 0.0229061i
\(328\) −6.00000 −0.331295
\(329\) 5.65685 0.311872
\(330\) 2.34315 + 13.6569i 0.128986 + 0.751785i
\(331\) −7.00000 7.00000i −0.384755 0.384755i 0.488057 0.872812i \(-0.337706\pi\)
−0.872812 + 0.488057i \(0.837706\pi\)
\(332\) −5.65685 5.65685i −0.310460 0.310460i
\(333\) 3.82843 + 1.82843i 0.209797 + 0.100197i
\(334\) −4.00000 −0.218870
\(335\) −14.1421 −0.772667
\(336\) −0.414214 2.41421i −0.0225972 0.131706i
\(337\) 6.00000i 0.326841i −0.986557 0.163420i \(-0.947747\pi\)
0.986557 0.163420i \(-0.0522527\pi\)
\(338\) 0 0
\(339\) −20.0000 14.1421i −1.08625 0.768095i
\(340\) 0 0
\(341\) 28.2843i 1.53168i
\(342\) 1.41421 + 4.00000i 0.0764719 + 0.216295i
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) −12.7279 + 12.7279i −0.686244 + 0.686244i
\(345\) 4.97056 + 28.9706i 0.267606 + 1.55972i
\(346\) 6.00000 6.00000i 0.322562 0.322562i
\(347\) 14.1421i 0.759190i 0.925153 + 0.379595i \(0.123937\pi\)
−0.925153 + 0.379595i \(0.876063\pi\)
\(348\) −2.82843 + 4.00000i −0.151620 + 0.214423i
\(349\) 17.0000 17.0000i 0.909989 0.909989i −0.0862816 0.996271i \(-0.527498\pi\)
0.996271 + 0.0862816i \(0.0274985\pi\)
\(350\) −1.41421 −0.0755929
\(351\) 0 0
\(352\) 20.0000 1.06600
\(353\) −18.3848 + 18.3848i −0.978523 + 0.978523i −0.999774 0.0212513i \(-0.993235\pi\)
0.0212513 + 0.999774i \(0.493235\pi\)
\(354\) 4.00000 5.65685i 0.212598 0.300658i
\(355\) 8.00000i 0.424596i
\(356\) −9.89949 + 9.89949i −0.524672 + 0.524672i
\(357\) 0 0
\(358\) 0 0
\(359\) −2.82843 2.82843i −0.149279 0.149279i 0.628517 0.777796i \(-0.283662\pi\)
−0.777796 + 0.628517i \(0.783662\pi\)
\(360\) 6.00000 + 16.9706i 0.316228 + 0.894427i
\(361\) 17.0000i 0.894737i
\(362\) 0 0
\(363\) −7.07107 5.00000i −0.371135 0.262432i
\(364\) 0 0
\(365\) 2.82843i 0.148047i
\(366\) 2.34315 + 13.6569i 0.122478 + 0.713855i
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −8.48528 −0.442326
\(369\) 5.41421 + 2.58579i 0.281853 + 0.134611i
\(370\) −2.00000 2.00000i −0.103975 0.103975i
\(371\) −5.65685 5.65685i −0.293689 0.293689i
\(372\) −2.07107 12.0711i −0.107380 0.625856i
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 20.4853 3.51472i 1.05786 0.181499i
\(376\) 12.0000i 0.618853i
\(377\) 0 0
\(378\) −2.00000 + 7.07107i −0.102869 + 0.363696i
\(379\) −19.0000 19.0000i −0.975964 0.975964i 0.0237534 0.999718i \(-0.492438\pi\)
−0.999718 + 0.0237534i \(0.992438\pi\)
\(380\) 2.82843i 0.145095i
\(381\) 0 0
\(382\) −2.00000 2.00000i −0.102329 0.102329i
\(383\) 11.3137 11.3137i 0.578103 0.578103i −0.356277 0.934380i \(-0.615954\pi\)
0.934380 + 0.356277i \(0.115954\pi\)
\(384\) 5.12132 0.878680i 0.261346 0.0448399i
\(385\) −8.00000 + 8.00000i −0.407718 + 0.407718i
\(386\) 26.8701i 1.36765i
\(387\) 16.9706 6.00000i 0.862662 0.304997i
\(388\) 7.00000 7.00000i 0.355371 0.355371i
\(389\) −16.9706 −0.860442 −0.430221 0.902724i \(-0.641564\pi\)
−0.430221 + 0.902724i \(0.641564\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −10.6066 + 10.6066i −0.535714 + 0.535714i
\(393\) 16.0000 + 11.3137i 0.807093 + 0.570701i
\(394\) 22.0000i 1.10834i
\(395\) 14.1421 14.1421i 0.711568 0.711568i
\(396\) −10.8284 5.17157i −0.544149 0.259881i
\(397\) 17.0000 17.0000i 0.853206 0.853206i −0.137321 0.990527i \(-0.543849\pi\)
0.990527 + 0.137321i \(0.0438492\pi\)
\(398\) 0 0
\(399\) −2.00000 + 2.82843i −0.100125 + 0.141598i
\(400\) 1.00000i 0.0500000i
\(401\) −15.5563 15.5563i −0.776847 0.776847i 0.202446 0.979293i \(-0.435111\pi\)
−0.979293 + 0.202446i \(0.935111\pi\)
\(402\) −7.07107 + 10.0000i −0.352673 + 0.498755i
\(403\) 0 0
\(404\) 8.48528i 0.422159i
\(405\) 1.89949 17.8995i 0.0943867 0.889433i
\(406\) 4.00000 0.198517
\(407\) 5.65685 0.280400
\(408\) 0 0
\(409\) 23.0000 + 23.0000i 1.13728 + 1.13728i 0.988936 + 0.148340i \(0.0473931\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) −2.82843 2.82843i −0.139686 0.139686i
\(411\) −23.8995 + 4.10051i −1.17888 + 0.202263i
\(412\) 6.00000 0.295599
\(413\) 5.65685 0.278356
\(414\) 22.9706 + 10.9706i 1.12894 + 0.539174i
\(415\) 16.0000i 0.785409i
\(416\) 0 0
\(417\) 4.00000 5.65685i 0.195881 0.277017i
\(418\) 4.00000 + 4.00000i 0.195646 + 0.195646i
\(419\) 11.3137i 0.552711i −0.961056 0.276355i \(-0.910873\pi\)
0.961056 0.276355i \(-0.0891267\pi\)
\(420\) −2.82843 + 4.00000i −0.138013 + 0.195180i
\(421\) −25.0000 25.0000i −1.21843 1.21843i −0.968183 0.250242i \(-0.919490\pi\)
−0.250242 0.968183i \(-0.580510\pi\)
\(422\) 9.89949 9.89949i 0.481900 0.481900i
\(423\) −5.17157 + 10.8284i −0.251450 + 0.526496i
\(424\) −12.0000 + 12.0000i −0.582772 + 0.582772i
\(425\) 0 0
\(426\) 5.65685 + 4.00000i 0.274075 + 0.193801i
\(427\) −8.00000 + 8.00000i −0.387147 + 0.387147i
\(428\) −5.65685 −0.273434
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) −22.6274 + 22.6274i −1.08992 + 1.08992i −0.0943889 + 0.995535i \(0.530090\pi\)
−0.995535 + 0.0943889i \(0.969910\pi\)
\(432\) 5.00000 + 1.41421i 0.240563 + 0.0680414i
\(433\) 18.0000i 0.865025i 0.901628 + 0.432512i \(0.142373\pi\)
−0.901628 + 0.432512i \(0.857627\pi\)
\(434\) −7.07107 + 7.07107i −0.339422 + 0.339422i
\(435\) −9.65685 + 1.65685i −0.463011 + 0.0794401i
\(436\) 1.00000 1.00000i 0.0478913 0.0478913i
\(437\) 8.48528 + 8.48528i 0.405906 + 0.405906i
\(438\) −2.00000 1.41421i −0.0955637 0.0675737i
\(439\) 30.0000i 1.43182i −0.698192 0.715911i \(-0.746012\pi\)
0.698192 0.715911i \(-0.253988\pi\)
\(440\) 16.9706 + 16.9706i 0.809040 + 0.809040i
\(441\) 14.1421 5.00000i 0.673435 0.238095i
\(442\) 0 0
\(443\) 28.2843i 1.34383i −0.740630 0.671913i \(-0.765473\pi\)
0.740630 0.671913i \(-0.234527\pi\)
\(444\) 2.41421 0.414214i 0.114574 0.0196577i
\(445\) −28.0000 −1.32733
\(446\) 15.5563 0.736614
\(447\) −0.585786 3.41421i −0.0277067 0.161487i
\(448\) −7.00000 7.00000i −0.330719 0.330719i
\(449\) −15.5563 15.5563i −0.734150 0.734150i 0.237289 0.971439i \(-0.423741\pi\)
−0.971439 + 0.237289i \(0.923741\pi\)
\(450\) 1.29289 2.70711i 0.0609476 0.127614i
\(451\) 8.00000 0.376705
\(452\) −14.1421 −0.665190
\(453\) −0.414214 2.41421i −0.0194615 0.113430i
\(454\) 8.00000i 0.375459i
\(455\) 0 0
\(456\) 6.00000 + 4.24264i 0.280976 + 0.198680i
\(457\) 29.0000 + 29.0000i 1.35656 + 1.35656i 0.878117 + 0.478446i \(0.158800\pi\)
0.478446 + 0.878117i \(0.341200\pi\)
\(458\) 1.41421i 0.0660819i
\(459\) 0 0
\(460\) 12.0000 + 12.0000i 0.559503 + 0.559503i
\(461\) 7.07107 7.07107i 0.329332 0.329332i −0.523000 0.852333i \(-0.675187\pi\)
0.852333 + 0.523000i \(0.175187\pi\)
\(462\) 1.65685 + 9.65685i 0.0770838 + 0.449278i
\(463\) 17.0000 17.0000i 0.790057 0.790057i −0.191446 0.981503i \(-0.561318\pi\)
0.981503 + 0.191446i \(0.0613177\pi\)
\(464\) 2.82843i 0.131306i
\(465\) 14.1421 20.0000i 0.655826 0.927478i
\(466\) 18.0000 18.0000i 0.833834 0.833834i
\(467\) 25.4558 1.17796 0.588978 0.808149i \(-0.299530\pi\)
0.588978 + 0.808149i \(0.299530\pi\)
\(468\) 0 0
\(469\) −10.0000 −0.461757
\(470\) 5.65685 5.65685i 0.260931 0.260931i
\(471\) −14.0000 + 19.7990i −0.645086 + 0.912289i
\(472\) 12.0000i 0.552345i
\(473\) 16.9706 16.9706i 0.780307 0.780307i
\(474\) −2.92893 17.0711i −0.134530 0.784100i
\(475\) 1.00000 1.00000i 0.0458831 0.0458831i
\(476\) 0 0
\(477\) 16.0000 5.65685i 0.732590 0.259010i
\(478\) 20.0000i 0.914779i
\(479\) 22.6274 + 22.6274i 1.03387 + 1.03387i 0.999406 + 0.0344672i \(0.0109734\pi\)
0.0344672 + 0.999406i \(0.489027\pi\)
\(480\) 14.1421 + 10.0000i 0.645497 + 0.456435i
\(481\) 0 0
\(482\) 24.0416i 1.09507i
\(483\) 3.51472 + 20.4853i 0.159925 + 0.932113i
\(484\) −5.00000 −0.227273
\(485\) 19.7990 0.899026
\(486\) −11.7071 10.2929i −0.531045 0.466895i
\(487\) −19.0000 19.0000i −0.860972 0.860972i 0.130479 0.991451i \(-0.458349\pi\)
−0.991451 + 0.130479i \(0.958349\pi\)
\(488\) 16.9706 + 16.9706i 0.768221 + 0.768221i
\(489\) −0.414214 2.41421i −0.0187314 0.109175i
\(490\) −10.0000 −0.451754
\(491\) 42.4264 1.91468 0.957338 0.288969i \(-0.0933124\pi\)
0.957338 + 0.288969i \(0.0933124\pi\)
\(492\) 3.41421 0.585786i 0.153925 0.0264093i
\(493\) 0 0
\(494\) 0 0
\(495\) −8.00000 22.6274i −0.359573 1.01703i
\(496\) 5.00000 + 5.00000i 0.224507 + 0.224507i
\(497\) 5.65685i 0.253745i
\(498\) −11.3137 8.00000i −0.506979 0.358489i
\(499\) 23.0000 + 23.0000i 1.02962 + 1.02962i 0.999548 + 0.0300737i \(0.00957421\pi\)
0.0300737 + 0.999548i \(0.490426\pi\)
\(500\) 8.48528 8.48528i 0.379473 0.379473i
\(501\) 6.82843 1.17157i 0.305072 0.0523420i
\(502\) −18.0000 + 18.0000i −0.803379 + 0.803379i
\(503\) 5.65685i 0.252227i 0.992016 + 0.126113i \(0.0402503\pi\)
−0.992016 + 0.126113i \(0.959750\pi\)
\(504\) 4.24264 + 12.0000i 0.188982 + 0.534522i
\(505\) −12.0000 + 12.0000i −0.533993 + 0.533993i
\(506\) 33.9411 1.50887
\(507\) 0 0
\(508\) 0 0
\(509\) 24.0416 24.0416i 1.06563 1.06563i 0.0679369 0.997690i \(-0.478358\pi\)
0.997690 0.0679369i \(-0.0216417\pi\)
\(510\) 0 0
\(511\) 2.00000i 0.0884748i
\(512\) −7.77817 + 7.77817i −0.343750 + 0.343750i
\(513\) −3.58579 6.41421i −0.158316 0.283194i
\(514\) −6.00000 + 6.00000i −0.264649 + 0.264649i
\(515\) 8.48528 + 8.48528i 0.373906 + 0.373906i
\(516\) 6.00000 8.48528i 0.264135 0.373544i
\(517\) 16.0000i 0.703679i
\(518\) −1.41421 1.41421i −0.0621370 0.0621370i
\(519\) −8.48528 + 12.0000i −0.372463 + 0.526742i
\(520\) 0 0
\(521\) 31.1127i 1.36307i 0.731785 + 0.681536i \(0.238688\pi\)
−0.731785 + 0.681536i \(0.761312\pi\)
\(522\) −3.65685 + 7.65685i −0.160056 + 0.335131i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 11.3137 0.494242
\(525\) 2.41421 0.414214i 0.105365 0.0180778i
\(526\) 16.0000 + 16.0000i 0.697633 + 0.697633i
\(527\) 0 0
\(528\) 6.82843 1.17157i 0.297169 0.0509862i
\(529\) 49.0000 2.13043
\(530\) −11.3137 −0.491436
\(531\) −5.17157 + 10.8284i −0.224427 + 0.469914i
\(532\) 2.00000i 0.0867110i
\(533\) 0 0
\(534\) −14.0000 + 19.7990i −0.605839 + 0.856786i
\(535\) −8.00000 8.00000i −0.345870 0.345870i
\(536\) 21.2132i 0.916271i
\(537\) 0 0
\(538\) −14.0000 14.0000i −0.603583 0.603583i
\(539\) 14.1421 14.1421i 0.609145 0.609145i
\(540\) −5.07107 9.07107i −0.218224 0.390357i
\(541\) −1.00000 + 1.00000i −0.0429934 + 0.0429934i −0.728277 0.685283i \(-0.759678\pi\)
0.685283 + 0.728277i \(0.259678\pi\)
\(542\) 26.8701i 1.15417i
\(543\) 0 0
\(544\) 0 0
\(545\) 2.82843 0.121157
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −9.89949 + 9.89949i −0.422885 + 0.422885i
\(549\) −8.00000 22.6274i −0.341432 0.965715i
\(550\) 4.00000i 0.170561i
\(551\) −2.82843 + 2.82843i −0.120495 + 0.120495i
\(552\) 43.4558 7.45584i 1.84960 0.317342i
\(553\) 10.0000 10.0000i 0.425243 0.425243i
\(554\) −8.48528 8.48528i −0.360505 0.360505i
\(555\) 4.00000 + 2.82843i 0.169791 + 0.120060i
\(556\) 4.00000i 0.169638i
\(557\) 9.89949 + 9.89949i 0.419455 + 0.419455i 0.885016 0.465561i \(-0.154147\pi\)
−0.465561 + 0.885016i \(0.654147\pi\)
\(558\) −7.07107 20.0000i −0.299342 0.846668i
\(559\) 0 0
\(560\) 2.82843i 0.119523i
\(561\) 0 0
\(562\) 14.0000 0.590554
\(563\) −33.9411 −1.43045 −0.715224 0.698895i \(-0.753675\pi\)
−0.715224 + 0.698895i \(0.753675\pi\)
\(564\) 1.17157 + 6.82843i 0.0493321 + 0.287529i
\(565\) −20.0000 20.0000i −0.841406 0.841406i
\(566\) 8.48528 + 8.48528i 0.356663 + 0.356663i
\(567\) 1.34315 12.6569i 0.0564068 0.531538i
\(568\) 12.0000 0.503509
\(569\) 8.48528 0.355722 0.177861 0.984056i \(-0.443082\pi\)
0.177861 + 0.984056i \(0.443082\pi\)
\(570\) 0.828427 + 4.82843i 0.0346990 + 0.202241i
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) 0 0
\(573\) 4.00000 + 2.82843i 0.167102 + 0.118159i
\(574\) −2.00000 2.00000i −0.0834784 0.0834784i
\(575\) 8.48528i 0.353861i
\(576\) 19.7990 7.00000i 0.824958 0.291667i
\(577\) −1.00000 1.00000i −0.0416305 0.0416305i 0.685985 0.727616i \(-0.259372\pi\)
−0.727616 + 0.685985i \(0.759372\pi\)
\(578\) −12.0208 + 12.0208i −0.500000 + 0.500000i
\(579\) −7.87006 45.8701i −0.327068 1.90629i
\(580\) −4.00000 + 4.00000i −0.166091 + 0.166091i
\(581\) 11.3137i 0.469372i
\(582\) 9.89949 14.0000i 0.410347 0.580319i
\(583\) 16.0000 16.0000i 0.662652 0.662652i
\(584\) −4.24264 −0.175562
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −5.65685 + 5.65685i −0.233483 + 0.233483i −0.814145 0.580662i \(-0.802794\pi\)
0.580662 + 0.814145i \(0.302794\pi\)
\(588\) 5.00000 7.07107i 0.206197 0.291606i
\(589\) 10.0000i 0.412043i
\(590\) 5.65685 5.65685i 0.232889 0.232889i
\(591\) 6.44365 + 37.5563i 0.265056 + 1.54486i
\(592\) −1.00000 + 1.00000i −0.0410997 + 0.0410997i
\(593\) 9.89949 + 9.89949i 0.406524 + 0.406524i 0.880524 0.474001i \(-0.157191\pi\)
−0.474001 + 0.880524i \(0.657191\pi\)
\(594\) −20.0000 5.65685i −0.820610 0.232104i
\(595\) 0 0
\(596\) −1.41421 1.41421i −0.0579284 0.0579284i
\(597\) 0 0
\(598\) 0 0
\(599\) 11.3137i 0.462266i −0.972922 0.231133i \(-0.925757\pi\)
0.972922 0.231133i \(-0.0742432\pi\)
\(600\) −0.878680 5.12132i −0.0358719 0.209077i
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) −8.48528 −0.345834
\(603\) 9.14214 19.1421i 0.372297 0.779528i
\(604\) −1.00000 1.00000i −0.0406894 0.0406894i
\(605\) −7.07107 7.07107i −0.287480 0.287480i
\(606\) 2.48528 + 14.4853i 0.100958 + 0.588424i
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 7.07107 0.286770
\(609\) −6.82843 + 1.17157i −0.276702 + 0.0474745i
\(610\) 16.0000i 0.647821i
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 1.00000i −0.0403896 0.0403896i 0.686624 0.727013i \(-0.259092\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 24.0416i 0.970241i
\(615\) 5.65685 + 4.00000i 0.228106 + 0.161296i
\(616\) 12.0000 + 12.0000i 0.483494 + 0.483494i
\(617\) −26.8701 + 26.8701i −1.08175 + 1.08175i −0.0854011 + 0.996347i \(0.527217\pi\)
−0.996347 + 0.0854011i \(0.972783\pi\)
\(618\) 10.2426 1.75736i 0.412019 0.0706914i
\(619\) −1.00000 + 1.00000i −0.0401934 + 0.0401934i −0.726918 0.686724i \(-0.759048\pi\)
0.686724 + 0.726918i \(0.259048\pi\)
\(620\) 14.1421i 0.567962i
\(621\) −42.4264 12.0000i −1.70251 0.481543i
\(622\) −6.00000 + 6.00000i −0.240578 + 0.240578i
\(623\) −19.7990 −0.793230
\(624\) 0 0
\(625\) 19.0000 0.760000
\(626\) 5.65685 5.65685i 0.226093 0.226093i
\(627\) −8.00000 5.65685i −0.319489 0.225913i
\(628\) 14.0000i 0.558661i
\(629\) 0 0
\(630\) −3.65685 + 7.65685i −0.145693 + 0.305056i
\(631\) −19.0000 + 19.0000i −0.756378 + 0.756378i −0.975661 0.219283i \(-0.929628\pi\)
0.219283 + 0.975661i \(0.429628\pi\)
\(632\) −21.2132 21.2132i −0.843816 0.843816i
\(633\) −14.0000 + 19.7990i −0.556450 + 0.786939i
\(634\) 10.0000i 0.397151i
\(635\) 0 0
\(636\) 5.65685 8.00000i 0.224309 0.317221i
\(637\) 0 0
\(638\) 11.3137i 0.447914i
\(639\) −10.8284 5.17157i −0.428366 0.204584i
\(640\) 6.00000 0.237171
\(641\) −16.9706 −0.670297 −0.335148 0.942165i \(-0.608786\pi\)
−0.335148 + 0.942165i \(0.608786\pi\)
\(642\) −9.65685 + 1.65685i −0.381126 + 0.0653908i
\(643\) 5.00000 + 5.00000i 0.197181 + 0.197181i 0.798790 0.601610i \(-0.205474\pi\)
−0.601610 + 0.798790i \(0.705474\pi\)
\(644\) 8.48528 + 8.48528i 0.334367 + 0.334367i
\(645\) 20.4853 3.51472i 0.806607 0.138392i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −26.8492 2.84924i −1.05474 0.111929i
\(649\) 16.0000i 0.628055i
\(650\) 0 0
\(651\) 10.0000 14.1421i 0.391931 0.554274i
\(652\) −1.00000 1.00000i −0.0391630 0.0391630i
\(653\) 14.1421i 0.553425i 0.960953 + 0.276712i \(0.0892449\pi\)
−0.960953 + 0.276712i \(0.910755\pi\)
\(654\) 1.41421 2.00000i 0.0553001 0.0782062i
\(655\) 16.0000 + 16.0000i 0.625172 + 0.625172i
\(656\) −1.41421 + 1.41421i −0.0552158 + 0.0552158i
\(657\) 3.82843 + 1.82843i 0.149361 + 0.0713337i
\(658\) 4.00000 4.00000i 0.155936 0.155936i
\(659\) 2.82843i 0.110180i −0.998481 0.0550899i \(-0.982455\pi\)
0.998481 0.0550899i \(-0.0175446\pi\)
\(660\) −11.3137 8.00000i −0.440386 0.311400i
\(661\) −1.00000 + 1.00000i −0.0388955 + 0.0388955i −0.726287 0.687392i \(-0.758756\pi\)
0.687392 + 0.726287i \(0.258756\pi\)
\(662\) −9.89949 −0.384755
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) −2.82843 + 2.82843i −0.109682 + 0.109682i
\(666\) 4.00000 1.41421i 0.154997 0.0547997i
\(667\) 24.0000i 0.929284i
\(668\) 2.82843 2.82843i 0.109435 0.109435i
\(669\) −26.5563 + 4.55635i −1.02673 + 0.176159i
\(670\) −10.0000 + 10.0000i −0.386334 + 0.386334i
\(671\) −22.6274 22.6274i −0.873522 0.873522i
\(672\) 10.0000 + 7.07107i 0.385758 + 0.272772i
\(673\) 12.0000i 0.462566i −0.972887 0.231283i \(-0.925708\pi\)
0.972887 0.231283i \(-0.0742923\pi\)
\(674\) −4.24264 4.24264i −0.163420 0.163420i
\(675\) −1.41421 + 5.00000i −0.0544331 + 0.192450i
\(676\) 0 0
\(677\) 22.6274i 0.869642i 0.900517 + 0.434821i \(0.143188\pi\)
−0.900517 + 0.434821i \(0.856812\pi\)
\(678\) −24.1421 + 4.14214i −0.927173 + 0.159078i
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) −2.34315 13.6569i −0.0897895 0.523332i
\(682\) −20.0000 20.0000i −0.765840 0.765840i
\(683\) −2.82843 2.82843i −0.108227 0.108227i 0.650920 0.759147i \(-0.274383\pi\)
−0.759147 + 0.650920i \(0.774383\pi\)
\(684\) −3.82843 1.82843i −0.146384 0.0699117i
\(685\) −28.0000 −1.06983
\(686\) −16.9706 −0.647939
\(687\) −0.414214 2.41421i −0.0158032 0.0921080i
\(688\) 6.00000i 0.228748i
\(689\) 0 0
\(690\) 24.0000 + 16.9706i 0.913664 + 0.646058i
\(691\) 11.0000 + 11.0000i 0.418460 + 0.418460i 0.884673 0.466213i \(-0.154382\pi\)
−0.466213 + 0.884673i \(0.654382\pi\)
\(692\) 8.48528i 0.322562i
\(693\) −5.65685 16.0000i −0.214886 0.607790i
\(694\) 10.0000 + 10.0000i 0.379595 + 0.379595i
\(695\) 5.65685 5.65685i 0.214577 0.214577i
\(696\) 2.48528 + 14.4853i 0.0942043 + 0.549063i
\(697\) 0 0
\(698\) 24.0416i 0.909989i
\(699\) −25.4558 + 36.0000i −0.962828 + 1.36165i
\(700\) 1.00000 1.00000i 0.0377964 0.0377964i
\(701\) −50.9117 −1.92291 −0.961454 0.274966i \(-0.911333\pi\)
−0.961454 + 0.274966i \(0.911333\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 19.7990 19.7990i 0.746203 0.746203i
\(705\) −8.00000 + 11.3137i −0.301297 + 0.426099i
\(706\) 26.0000i 0.978523i
\(707\) −8.48528 + 8.48528i −0.319122 + 0.319122i
\(708\) 1.17157 + 6.82843i 0.0440304 + 0.256628i
\(709\) −19.0000 + 19.0000i −0.713560 + 0.713560i −0.967278 0.253718i \(-0.918346\pi\)
0.253718 + 0.967278i \(0.418346\pi\)
\(710\) 5.65685 + 5.65685i 0.212298 + 0.212298i
\(711\) 10.0000 + 28.2843i 0.375029 + 1.06074i
\(712\) 42.0000i 1.57402i
\(713\) −42.4264 42.4264i −1.58888 1.58888i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5.85786 34.1421i −0.218766 1.27506i
\(718\) −4.00000 −0.149279
\(719\) 25.4558 0.949343 0.474671 0.880163i \(-0.342567\pi\)
0.474671 + 0.880163i \(0.342567\pi\)
\(720\) 5.41421 + 2.58579i 0.201776 + 0.0963666i
\(721\) 6.00000 + 6.00000i 0.223452 + 0.223452i
\(722\) −12.0208 12.0208i −0.447368 0.447368i
\(723\) 7.04163 + 41.0416i 0.261881 + 1.52635i
\(724\) 0 0
\(725\) 2.82843 0.105045
\(726\) −8.53553 + 1.46447i −0.316783 + 0.0543514i
\(727\) 48.0000i 1.78022i −0.455744 0.890111i \(-0.650627\pi\)
0.455744 0.890111i \(-0.349373\pi\)
\(728\) 0 0
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) −2.00000 2.00000i −0.0740233 0.0740233i
\(731\) 0 0
\(732\) −11.3137 8.00000i −0.418167 0.295689i
\(733\) 5.00000 + 5.00000i 0.184679 + 0.184679i 0.793391 0.608712i \(-0.208314\pi\)
−0.608712 + 0.793391i \(0.708314\pi\)
\(734\) 5.65685 5.65685i 0.208798 0.208798i
\(735\) 17.0711 2.92893i 0.629676 0.108035i
\(736\) 30.0000 30.0000i 1.10581 1.10581i
\(737\) 28.2843i 1.04186i
\(738\) 5.65685 2.00000i 0.208232 0.0736210i
\(739\) −1.00000 + 1.00000i −0.0367856 + 0.0367856i −0.725260 0.688475i \(-0.758281\pi\)
0.688475 + 0.725260i \(0.258281\pi\)
\(740\) 2.82843 0.103975
\(741\) 0 0
\(742\) −8.00000 −0.293689
\(743\) 11.3137 11.3137i 0.415060 0.415060i −0.468437 0.883497i \(-0.655183\pi\)
0.883497 + 0.468437i \(0.155183\pi\)
\(744\) −30.0000 21.2132i −1.09985 0.777714i
\(745\) 4.00000i 0.146549i
\(746\) −2.82843 + 2.82843i −0.103556 + 0.103556i
\(747\) 21.6569 + 10.3431i 0.792383 + 0.378436i
\(748\) 0 0
\(749\) −5.65685 5.65685i −0.206697 0.206697i
\(750\) 12.0000 16.9706i 0.438178 0.619677i
\(751\) 30.0000i 1.09472i 0.836899 + 0.547358i \(0.184366\pi\)
−0.836899 + 0.547358i \(0.815634\pi\)
\(752\) −2.82843 2.82843i −0.103142 0.103142i
\(753\) 25.4558 36.0000i 0.927663 1.31191i
\(754\) 0 0
\(755\) 2.82843i 0.102937i
\(756\) −3.58579 6.41421i −0.130414 0.233283i
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) −26.8701 −0.975964
\(759\) −57.9411 + 9.94113i −2.10313 + 0.360840i
\(760\) 6.00000 + 6.00000i 0.217643 + 0.217643i
\(761\) 35.3553 + 35.3553i 1.28163 + 1.28163i 0.939740 + 0.341890i \(0.111067\pi\)
0.341890 + 0.939740i \(0.388933\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 2.82843 0.102329
\(765\) 0 0
\(766\) 16.0000i 0.578103i
\(767\) 0 0
\(768\) 17.0000 24.0416i 0.613435 0.867528i
\(769\) −13.0000 13.0000i −0.468792 0.468792i 0.432731 0.901523i \(-0.357550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 11.3137i 0.407718i
\(771\) 8.48528 12.0000i 0.305590 0.432169i
\(772\) −19.0000 19.0000i −0.683825 0.683825i
\(773\) −9.89949 + 9.89949i −0.356060 + 0.356060i −0.862358 0.506298i \(-0.831013\pi\)
0.506298 + 0.862358i \(0.331013\pi\)
\(774\) 7.75736 16.2426i 0.278833 0.583830i
\(775\) −5.00000 + 5.00000i −0.179605 + 0.179605i
\(776\) 29.6985i 1.06611i