Properties

Label 507.2.e.l
Level $507$
Weight $2$
Character orbit 507.e
Analytic conductor $4.048$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(22,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{5} - \beta_{4} - 2 \beta_1 + 2) q^{2} + ( - \beta_{5} + 1) q^{3} + ( - 4 \beta_{5} + \beta_{2} - \beta_1) q^{4} + ( - \beta_{3} - \beta_{2} - 2) q^{5} + ( - 2 \beta_{5} - \beta_{4} + \cdots - 2 \beta_1) q^{6}+ \cdots - \beta_{5} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \beta_{5} - \beta_{4} - 2 \beta_1 + 2) q^{2} + ( - \beta_{5} + 1) q^{3} + ( - 4 \beta_{5} + \beta_{2} - \beta_1) q^{4} + ( - \beta_{3} - \beta_{2} - 2) q^{5} + ( - 2 \beta_{5} - \beta_{4} + \cdots - 2 \beta_1) q^{6}+ \cdots + (3 \beta_{3} - 2 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 3 q^{3} - 11 q^{4} - 12 q^{5} - 3 q^{6} + 2 q^{7} - 24 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} + 3 q^{3} - 11 q^{4} - 12 q^{5} - 3 q^{6} + 2 q^{7} - 24 q^{8} - 3 q^{9} + q^{10} + 5 q^{11} - 22 q^{12} - 10 q^{14} - 6 q^{15} - 11 q^{16} + q^{17} - 6 q^{18} - 7 q^{19} + 15 q^{20} + 4 q^{21} + 9 q^{22} - 12 q^{24} + 22 q^{25} - 6 q^{27} + 5 q^{28} + 2 q^{29} - q^{30} + 32 q^{31} + 22 q^{32} - 5 q^{33} + 16 q^{34} - 4 q^{35} - 11 q^{36} + 22 q^{37} + 6 q^{40} + 11 q^{41} - 5 q^{42} + 15 q^{43} - 32 q^{44} + 6 q^{45} - 7 q^{46} - 14 q^{47} + 11 q^{48} + 15 q^{49} - 3 q^{50} + 2 q^{51} - 34 q^{53} - 3 q^{54} - 3 q^{55} - q^{56} - 14 q^{57} + 12 q^{58} - 6 q^{59} + 30 q^{60} + 13 q^{61} + 2 q^{62} + 2 q^{63} + 18 q^{66} + 11 q^{67} + 13 q^{68} + 48 q^{70} + 12 q^{72} - 12 q^{73} - 15 q^{74} + 11 q^{75} - 21 q^{76} + 30 q^{77} + 6 q^{79} - 20 q^{80} - 3 q^{81} + 3 q^{82} - 24 q^{83} - 5 q^{84} + 19 q^{85} + 58 q^{86} - 2 q^{87} - 13 q^{88} + q^{89} - 2 q^{90} + 14 q^{92} + 16 q^{93} + 21 q^{95} + 44 q^{96} - 5 q^{97} - 29 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(-\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
0.900969 1.56052i
0.222521 0.385418i
−0.623490 + 1.07992i
0.900969 + 1.56052i
0.222521 + 0.385418i
−0.623490 1.07992i
−1.02446 + 1.77441i 0.500000 0.866025i −1.09903 1.90358i −3.35690 1.02446 + 1.77441i 1.12349 + 1.94594i 0.405813 −0.500000 0.866025i 3.43900 5.95652i
22.2 1.17845 2.04113i 0.500000 0.866025i −1.77748 3.07868i −3.69202 −1.17845 2.04113i −0.400969 0.694498i −3.66487 −0.500000 0.866025i −4.35086 + 7.53590i
22.3 1.34601 2.33136i 0.500000 0.866025i −2.62349 4.54402i 1.04892 −1.34601 2.33136i 0.277479 + 0.480608i −8.74094 −0.500000 0.866025i 1.41185 2.44540i
484.1 −1.02446 1.77441i 0.500000 + 0.866025i −1.09903 + 1.90358i −3.35690 1.02446 1.77441i 1.12349 1.94594i 0.405813 −0.500000 + 0.866025i 3.43900 + 5.95652i
484.2 1.17845 + 2.04113i 0.500000 + 0.866025i −1.77748 + 3.07868i −3.69202 −1.17845 + 2.04113i −0.400969 + 0.694498i −3.66487 −0.500000 + 0.866025i −4.35086 7.53590i
484.3 1.34601 + 2.33136i 0.500000 + 0.866025i −2.62349 + 4.54402i 1.04892 −1.34601 + 2.33136i 0.277479 0.480608i −8.74094 −0.500000 + 0.866025i 1.41185 + 2.44540i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 22.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.2.e.l 6
13.b even 2 1 507.2.e.i 6
13.c even 3 1 507.2.a.i 3
13.c even 3 1 inner 507.2.e.l 6
13.d odd 4 2 507.2.j.i 12
13.e even 6 1 507.2.a.l yes 3
13.e even 6 1 507.2.e.i 6
13.f odd 12 2 507.2.b.f 6
13.f odd 12 2 507.2.j.i 12
39.h odd 6 1 1521.2.a.n 3
39.i odd 6 1 1521.2.a.s 3
39.k even 12 2 1521.2.b.k 6
52.i odd 6 1 8112.2.a.cp 3
52.j odd 6 1 8112.2.a.cg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.2.a.i 3 13.c even 3 1
507.2.a.l yes 3 13.e even 6 1
507.2.b.f 6 13.f odd 12 2
507.2.e.i 6 13.b even 2 1
507.2.e.i 6 13.e even 6 1
507.2.e.l 6 1.a even 1 1 trivial
507.2.e.l 6 13.c even 3 1 inner
507.2.j.i 12 13.d odd 4 2
507.2.j.i 12 13.f odd 12 2
1521.2.a.n 3 39.h odd 6 1
1521.2.a.s 3 39.i odd 6 1
1521.2.b.k 6 39.k even 12 2
8112.2.a.cg 3 52.j odd 6 1
8112.2.a.cp 3 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\):

\( T_{2}^{6} - 3T_{2}^{5} + 13T_{2}^{4} - 14T_{2}^{3} + 55T_{2}^{2} - 52T_{2} + 169 \) Copy content Toggle raw display
\( T_{5}^{3} + 6T_{5}^{2} + 5T_{5} - 13 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{3} + 6 T^{2} + 5 T - 13)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} - 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} - 5 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - T^{5} + \cdots + 169 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( T^{6} + 49 T^{4} + \cdots + 8281 \) Copy content Toggle raw display
$29$ \( T^{6} - 2 T^{5} + \cdots + 841 \) Copy content Toggle raw display
$31$ \( (T^{3} - 16 T^{2} + \cdots + 197)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} - 22 T^{5} + \cdots + 142129 \) Copy content Toggle raw display
$41$ \( T^{6} - 11 T^{5} + \cdots + 841 \) Copy content Toggle raw display
$43$ \( T^{6} - 15 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$47$ \( (T^{3} + 7 T^{2} + 14 T + 7)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 17 T^{2} + \cdots - 41)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$61$ \( T^{6} - 13 T^{5} + \cdots + 27889 \) Copy content Toggle raw display
$67$ \( T^{6} - 11 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$71$ \( T^{6} + 91 T^{4} + \cdots + 41209 \) Copy content Toggle raw display
$73$ \( (T^{3} + 6 T^{2} + \cdots - 923)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 3 T^{2} - 18 T + 27)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} + 12 T^{2} + \cdots + 43)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - T^{5} + \cdots + 12769 \) Copy content Toggle raw display
$97$ \( T^{6} + 5 T^{5} + \cdots + 2679769 \) Copy content Toggle raw display
show more
show less