Properties

Label 507.2.e.d.22.2
Level $507$
Weight $2$
Character 507.22
Analytic conductor $4.048$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(22,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 507.22
Dual form 507.2.e.d.484.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.207107 - 0.358719i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.914214 + 1.58346i) q^{4} +2.82843 q^{5} +(0.207107 + 0.358719i) q^{6} +(1.41421 + 2.44949i) q^{7} +1.58579 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.207107 - 0.358719i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.914214 + 1.58346i) q^{4} +2.82843 q^{5} +(0.207107 + 0.358719i) q^{6} +(1.41421 + 2.44949i) q^{7} +1.58579 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.585786 - 1.01461i) q^{10} +(-1.00000 + 1.73205i) q^{11} -1.82843 q^{12} +1.17157 q^{14} +(-1.41421 + 2.44949i) q^{15} +(-1.50000 + 2.59808i) q^{16} +(-3.82843 - 6.63103i) q^{17} -0.414214 q^{18} +(-1.41421 - 2.44949i) q^{19} +(2.58579 + 4.47871i) q^{20} -2.82843 q^{21} +(0.414214 + 0.717439i) q^{22} +(2.00000 - 3.46410i) q^{23} +(-0.792893 + 1.37333i) q^{24} +3.00000 q^{25} +1.00000 q^{27} +(-2.58579 + 4.47871i) q^{28} +(-1.00000 + 1.73205i) q^{29} +(0.585786 + 1.01461i) q^{30} +1.17157 q^{31} +(2.20711 + 3.82282i) q^{32} +(-1.00000 - 1.73205i) q^{33} -3.17157 q^{34} +(4.00000 + 6.92820i) q^{35} +(0.914214 - 1.58346i) q^{36} +(-3.82843 + 6.63103i) q^{37} -1.17157 q^{38} +4.48528 q^{40} +(2.58579 - 4.47871i) q^{41} +(-0.585786 + 1.01461i) q^{42} +(0.828427 + 1.43488i) q^{43} -3.65685 q^{44} +(-1.41421 - 2.44949i) q^{45} +(-0.828427 - 1.43488i) q^{46} +11.6569 q^{47} +(-1.50000 - 2.59808i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.621320 - 1.07616i) q^{50} +7.65685 q^{51} -2.00000 q^{53} +(0.207107 - 0.358719i) q^{54} +(-2.82843 + 4.89898i) q^{55} +(2.24264 + 3.88437i) q^{56} +2.82843 q^{57} +(0.414214 + 0.717439i) q^{58} +(3.82843 + 6.63103i) q^{59} -5.17157 q^{60} +(-6.65685 - 11.5300i) q^{61} +(0.242641 - 0.420266i) q^{62} +(1.41421 - 2.44949i) q^{63} -4.17157 q^{64} -0.828427 q^{66} +(3.41421 - 5.91359i) q^{67} +(7.00000 - 12.1244i) q^{68} +(2.00000 + 3.46410i) q^{69} +3.31371 q^{70} +(1.00000 + 1.73205i) q^{71} +(-0.792893 - 1.37333i) q^{72} -0.343146 q^{73} +(1.58579 + 2.74666i) q^{74} +(-1.50000 + 2.59808i) q^{75} +(2.58579 - 4.47871i) q^{76} -5.65685 q^{77} -11.3137 q^{79} +(-4.24264 + 7.34847i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-1.07107 - 1.85514i) q^{82} -3.65685 q^{83} +(-2.58579 - 4.47871i) q^{84} +(-10.8284 - 18.7554i) q^{85} +0.686292 q^{86} +(-1.00000 - 1.73205i) q^{87} +(-1.58579 + 2.74666i) q^{88} +(7.41421 - 12.8418i) q^{89} -1.17157 q^{90} +7.31371 q^{92} +(-0.585786 + 1.01461i) q^{93} +(2.41421 - 4.18154i) q^{94} +(-4.00000 - 6.92820i) q^{95} -4.41421 q^{96} +(1.82843 + 3.16693i) q^{97} +(0.207107 + 0.358719i) q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{6} + 12 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{6} + 12 q^{8} - 2 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 16 q^{14} - 6 q^{16} - 4 q^{17} + 4 q^{18} + 16 q^{20} - 4 q^{22} + 8 q^{23} - 6 q^{24} + 12 q^{25} + 4 q^{27} - 16 q^{28} - 4 q^{29} + 8 q^{30} + 16 q^{31} + 6 q^{32} - 4 q^{33} - 24 q^{34} + 16 q^{35} - 2 q^{36} - 4 q^{37} - 16 q^{38} - 16 q^{40} + 16 q^{41} - 8 q^{42} - 8 q^{43} + 8 q^{44} + 8 q^{46} + 24 q^{47} - 6 q^{48} - 2 q^{49} - 6 q^{50} + 8 q^{51} - 8 q^{53} - 2 q^{54} - 8 q^{56} - 4 q^{58} + 4 q^{59} - 32 q^{60} - 4 q^{61} - 16 q^{62} - 28 q^{64} + 8 q^{66} + 8 q^{67} + 28 q^{68} + 8 q^{69} - 32 q^{70} + 4 q^{71} - 6 q^{72} - 24 q^{73} + 12 q^{74} - 6 q^{75} + 16 q^{76} - 2 q^{81} + 24 q^{82} + 8 q^{83} - 16 q^{84} - 32 q^{85} + 48 q^{86} - 4 q^{87} - 12 q^{88} + 24 q^{89} - 16 q^{90} - 16 q^{92} - 8 q^{93} + 4 q^{94} - 16 q^{95} - 12 q^{96} - 4 q^{97} - 2 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.207107 0.358719i 0.146447 0.253653i −0.783465 0.621436i \(-0.786550\pi\)
0.929912 + 0.367783i \(0.119883\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.914214 + 1.58346i 0.457107 + 0.791732i
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0.207107 + 0.358719i 0.0845510 + 0.146447i
\(7\) 1.41421 + 2.44949i 0.534522 + 0.925820i 0.999186 + 0.0403329i \(0.0128419\pi\)
−0.464664 + 0.885487i \(0.653825\pi\)
\(8\) 1.58579 0.560660
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.585786 1.01461i 0.185242 0.320848i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) −1.82843 −0.527821
\(13\) 0 0
\(14\) 1.17157 0.313116
\(15\) −1.41421 + 2.44949i −0.365148 + 0.632456i
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) −3.82843 6.63103i −0.928530 1.60826i −0.785783 0.618502i \(-0.787740\pi\)
−0.142747 0.989759i \(-0.545593\pi\)
\(18\) −0.414214 −0.0976311
\(19\) −1.41421 2.44949i −0.324443 0.561951i 0.656957 0.753928i \(-0.271843\pi\)
−0.981399 + 0.191977i \(0.938510\pi\)
\(20\) 2.58579 + 4.47871i 0.578199 + 1.00147i
\(21\) −2.82843 −0.617213
\(22\) 0.414214 + 0.717439i 0.0883106 + 0.152958i
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) −0.792893 + 1.37333i −0.161849 + 0.280330i
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −2.58579 + 4.47871i −0.488668 + 0.846397i
\(29\) −1.00000 + 1.73205i −0.185695 + 0.321634i −0.943811 0.330487i \(-0.892787\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0.585786 + 1.01461i 0.106949 + 0.185242i
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 2.20711 + 3.82282i 0.390165 + 0.675786i
\(33\) −1.00000 1.73205i −0.174078 0.301511i
\(34\) −3.17157 −0.543920
\(35\) 4.00000 + 6.92820i 0.676123 + 1.17108i
\(36\) 0.914214 1.58346i 0.152369 0.263911i
\(37\) −3.82843 + 6.63103i −0.629390 + 1.09013i 0.358285 + 0.933612i \(0.383362\pi\)
−0.987674 + 0.156522i \(0.949972\pi\)
\(38\) −1.17157 −0.190054
\(39\) 0 0
\(40\) 4.48528 0.709185
\(41\) 2.58579 4.47871i 0.403832 0.699458i −0.590353 0.807145i \(-0.701011\pi\)
0.994185 + 0.107688i \(0.0343447\pi\)
\(42\) −0.585786 + 1.01461i −0.0903888 + 0.156558i
\(43\) 0.828427 + 1.43488i 0.126334 + 0.218817i 0.922254 0.386585i \(-0.126346\pi\)
−0.795920 + 0.605402i \(0.793012\pi\)
\(44\) −3.65685 −0.551292
\(45\) −1.41421 2.44949i −0.210819 0.365148i
\(46\) −0.828427 1.43488i −0.122145 0.211561i
\(47\) 11.6569 1.70033 0.850163 0.526519i \(-0.176503\pi\)
0.850163 + 0.526519i \(0.176503\pi\)
\(48\) −1.50000 2.59808i −0.216506 0.375000i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0.621320 1.07616i 0.0878680 0.152192i
\(51\) 7.65685 1.07217
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0.207107 0.358719i 0.0281837 0.0488155i
\(55\) −2.82843 + 4.89898i −0.381385 + 0.660578i
\(56\) 2.24264 + 3.88437i 0.299685 + 0.519070i
\(57\) 2.82843 0.374634
\(58\) 0.414214 + 0.717439i 0.0543889 + 0.0942043i
\(59\) 3.82843 + 6.63103i 0.498419 + 0.863287i 0.999998 0.00182490i \(-0.000580884\pi\)
−0.501580 + 0.865112i \(0.667248\pi\)
\(60\) −5.17157 −0.667647
\(61\) −6.65685 11.5300i −0.852323 1.47627i −0.879107 0.476625i \(-0.841860\pi\)
0.0267837 0.999641i \(-0.491473\pi\)
\(62\) 0.242641 0.420266i 0.0308154 0.0533738i
\(63\) 1.41421 2.44949i 0.178174 0.308607i
\(64\) −4.17157 −0.521447
\(65\) 0 0
\(66\) −0.828427 −0.101972
\(67\) 3.41421 5.91359i 0.417113 0.722460i −0.578535 0.815657i \(-0.696375\pi\)
0.995648 + 0.0931973i \(0.0297087\pi\)
\(68\) 7.00000 12.1244i 0.848875 1.47029i
\(69\) 2.00000 + 3.46410i 0.240772 + 0.417029i
\(70\) 3.31371 0.396064
\(71\) 1.00000 + 1.73205i 0.118678 + 0.205557i 0.919244 0.393688i \(-0.128801\pi\)
−0.800566 + 0.599245i \(0.795468\pi\)
\(72\) −0.792893 1.37333i −0.0934434 0.161849i
\(73\) −0.343146 −0.0401622 −0.0200811 0.999798i \(-0.506392\pi\)
−0.0200811 + 0.999798i \(0.506392\pi\)
\(74\) 1.58579 + 2.74666i 0.184344 + 0.319293i
\(75\) −1.50000 + 2.59808i −0.173205 + 0.300000i
\(76\) 2.58579 4.47871i 0.296610 0.513744i
\(77\) −5.65685 −0.644658
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) −4.24264 + 7.34847i −0.474342 + 0.821584i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −1.07107 1.85514i −0.118280 0.204866i
\(83\) −3.65685 −0.401392 −0.200696 0.979654i \(-0.564320\pi\)
−0.200696 + 0.979654i \(0.564320\pi\)
\(84\) −2.58579 4.47871i −0.282132 0.488668i
\(85\) −10.8284 18.7554i −1.17451 2.03431i
\(86\) 0.686292 0.0740047
\(87\) −1.00000 1.73205i −0.107211 0.185695i
\(88\) −1.58579 + 2.74666i −0.169045 + 0.292795i
\(89\) 7.41421 12.8418i 0.785905 1.36123i −0.142552 0.989787i \(-0.545531\pi\)
0.928457 0.371440i \(-0.121136\pi\)
\(90\) −1.17157 −0.123495
\(91\) 0 0
\(92\) 7.31371 0.762507
\(93\) −0.585786 + 1.01461i −0.0607432 + 0.105210i
\(94\) 2.41421 4.18154i 0.249007 0.431293i
\(95\) −4.00000 6.92820i −0.410391 0.710819i
\(96\) −4.41421 −0.450524
\(97\) 1.82843 + 3.16693i 0.185649 + 0.321553i 0.943795 0.330532i \(-0.107228\pi\)
−0.758146 + 0.652085i \(0.773895\pi\)
\(98\) 0.207107 + 0.358719i 0.0209209 + 0.0362361i
\(99\) 2.00000 0.201008
\(100\) 2.74264 + 4.75039i 0.274264 + 0.475039i
\(101\) −3.82843 + 6.63103i −0.380943 + 0.659812i −0.991197 0.132393i \(-0.957734\pi\)
0.610255 + 0.792205i \(0.291067\pi\)
\(102\) 1.58579 2.74666i 0.157016 0.271960i
\(103\) 2.34315 0.230877 0.115439 0.993315i \(-0.463173\pi\)
0.115439 + 0.993315i \(0.463173\pi\)
\(104\) 0 0
\(105\) −8.00000 −0.780720
\(106\) −0.414214 + 0.717439i −0.0402320 + 0.0696838i
\(107\) 5.65685 9.79796i 0.546869 0.947204i −0.451618 0.892211i \(-0.649153\pi\)
0.998487 0.0549930i \(-0.0175137\pi\)
\(108\) 0.914214 + 1.58346i 0.0879702 + 0.152369i
\(109\) −5.31371 −0.508961 −0.254480 0.967078i \(-0.581904\pi\)
−0.254480 + 0.967078i \(0.581904\pi\)
\(110\) 1.17157 + 2.02922i 0.111705 + 0.193479i
\(111\) −3.82843 6.63103i −0.363378 0.629390i
\(112\) −8.48528 −0.801784
\(113\) 2.65685 + 4.60181i 0.249936 + 0.432902i 0.963508 0.267680i \(-0.0862571\pi\)
−0.713572 + 0.700582i \(0.752924\pi\)
\(114\) 0.585786 1.01461i 0.0548639 0.0950271i
\(115\) 5.65685 9.79796i 0.527504 0.913664i
\(116\) −3.65685 −0.339530
\(117\) 0 0
\(118\) 3.17157 0.291967
\(119\) 10.8284 18.7554i 0.992640 1.71930i
\(120\) −2.24264 + 3.88437i −0.204724 + 0.354593i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −5.51472 −0.499279
\(123\) 2.58579 + 4.47871i 0.233153 + 0.403832i
\(124\) 1.07107 + 1.85514i 0.0961847 + 0.166597i
\(125\) −5.65685 −0.505964
\(126\) −0.585786 1.01461i −0.0521860 0.0903888i
\(127\) −2.82843 + 4.89898i −0.250982 + 0.434714i −0.963797 0.266639i \(-0.914087\pi\)
0.712814 + 0.701353i \(0.247420\pi\)
\(128\) −5.27817 + 9.14207i −0.466529 + 0.808052i
\(129\) −1.65685 −0.145878
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 1.82843 3.16693i 0.159144 0.275646i
\(133\) 4.00000 6.92820i 0.346844 0.600751i
\(134\) −1.41421 2.44949i −0.122169 0.211604i
\(135\) 2.82843 0.243432
\(136\) −6.07107 10.5154i −0.520590 0.901688i
\(137\) −5.41421 9.37769i −0.462567 0.801190i 0.536521 0.843887i \(-0.319738\pi\)
−0.999088 + 0.0426968i \(0.986405\pi\)
\(138\) 1.65685 0.141041
\(139\) 3.65685 + 6.33386i 0.310170 + 0.537231i 0.978399 0.206725i \(-0.0662806\pi\)
−0.668229 + 0.743956i \(0.732947\pi\)
\(140\) −7.31371 + 12.6677i −0.618121 + 1.07062i
\(141\) −5.82843 + 10.0951i −0.490842 + 0.850163i
\(142\) 0.828427 0.0695201
\(143\) 0 0
\(144\) 3.00000 0.250000
\(145\) −2.82843 + 4.89898i −0.234888 + 0.406838i
\(146\) −0.0710678 + 0.123093i −0.00588161 + 0.0101873i
\(147\) −0.500000 0.866025i −0.0412393 0.0714286i
\(148\) −14.0000 −1.15079
\(149\) −4.58579 7.94282i −0.375682 0.650701i 0.614747 0.788725i \(-0.289258\pi\)
−0.990429 + 0.138024i \(0.955925\pi\)
\(150\) 0.621320 + 1.07616i 0.0507306 + 0.0878680i
\(151\) 3.51472 0.286024 0.143012 0.989721i \(-0.454321\pi\)
0.143012 + 0.989721i \(0.454321\pi\)
\(152\) −2.24264 3.88437i −0.181902 0.315064i
\(153\) −3.82843 + 6.63103i −0.309510 + 0.536087i
\(154\) −1.17157 + 2.02922i −0.0944080 + 0.163520i
\(155\) 3.31371 0.266163
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −2.34315 + 4.05845i −0.186411 + 0.322873i
\(159\) 1.00000 1.73205i 0.0793052 0.137361i
\(160\) 6.24264 + 10.8126i 0.493524 + 0.854809i
\(161\) 11.3137 0.891645
\(162\) 0.207107 + 0.358719i 0.0162718 + 0.0281837i
\(163\) 9.41421 + 16.3059i 0.737378 + 1.27718i 0.953672 + 0.300848i \(0.0972697\pi\)
−0.216294 + 0.976328i \(0.569397\pi\)
\(164\) 9.45584 0.738377
\(165\) −2.82843 4.89898i −0.220193 0.381385i
\(166\) −0.757359 + 1.31178i −0.0587825 + 0.101814i
\(167\) −1.82843 + 3.16693i −0.141488 + 0.245064i −0.928057 0.372438i \(-0.878522\pi\)
0.786569 + 0.617502i \(0.211855\pi\)
\(168\) −4.48528 −0.346047
\(169\) 0 0
\(170\) −8.97056 −0.688011
\(171\) −1.41421 + 2.44949i −0.108148 + 0.187317i
\(172\) −1.51472 + 2.62357i −0.115496 + 0.200045i
\(173\) 5.82843 + 10.0951i 0.443127 + 0.767519i 0.997920 0.0644701i \(-0.0205357\pi\)
−0.554793 + 0.831989i \(0.687202\pi\)
\(174\) −0.828427 −0.0628029
\(175\) 4.24264 + 7.34847i 0.320713 + 0.555492i
\(176\) −3.00000 5.19615i −0.226134 0.391675i
\(177\) −7.65685 −0.575524
\(178\) −3.07107 5.31925i −0.230186 0.398694i
\(179\) 11.6569 20.1903i 0.871274 1.50909i 0.0105948 0.999944i \(-0.496628\pi\)
0.860679 0.509147i \(-0.170039\pi\)
\(180\) 2.58579 4.47871i 0.192733 0.333824i
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 13.3137 0.984178
\(184\) 3.17157 5.49333i 0.233811 0.404973i
\(185\) −10.8284 + 18.7554i −0.796122 + 1.37892i
\(186\) 0.242641 + 0.420266i 0.0177913 + 0.0308154i
\(187\) 15.3137 1.11985
\(188\) 10.6569 + 18.4582i 0.777231 + 1.34620i
\(189\) 1.41421 + 2.44949i 0.102869 + 0.178174i
\(190\) −3.31371 −0.240402
\(191\) −1.65685 2.86976i −0.119886 0.207648i 0.799836 0.600218i \(-0.204919\pi\)
−0.919722 + 0.392570i \(0.871586\pi\)
\(192\) 2.08579 3.61269i 0.150529 0.260723i
\(193\) 2.65685 4.60181i 0.191245 0.331245i −0.754418 0.656394i \(-0.772081\pi\)
0.945663 + 0.325149i \(0.105414\pi\)
\(194\) 1.51472 0.108750
\(195\) 0 0
\(196\) −1.82843 −0.130602
\(197\) 0.242641 0.420266i 0.0172874 0.0299427i −0.857252 0.514897i \(-0.827830\pi\)
0.874540 + 0.484954i \(0.161164\pi\)
\(198\) 0.414214 0.717439i 0.0294369 0.0509862i
\(199\) −10.8284 18.7554i −0.767607 1.32953i −0.938857 0.344307i \(-0.888114\pi\)
0.171250 0.985228i \(-0.445219\pi\)
\(200\) 4.75736 0.336396
\(201\) 3.41421 + 5.91359i 0.240820 + 0.417113i
\(202\) 1.58579 + 2.74666i 0.111576 + 0.193255i
\(203\) −5.65685 −0.397033
\(204\) 7.00000 + 12.1244i 0.490098 + 0.848875i
\(205\) 7.31371 12.6677i 0.510812 0.884752i
\(206\) 0.485281 0.840532i 0.0338112 0.0585626i
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 5.65685 0.391293
\(210\) −1.65685 + 2.86976i −0.114334 + 0.198032i
\(211\) 6.00000 10.3923i 0.413057 0.715436i −0.582165 0.813070i \(-0.697794\pi\)
0.995222 + 0.0976347i \(0.0311277\pi\)
\(212\) −1.82843 3.16693i −0.125577 0.217506i
\(213\) −2.00000 −0.137038
\(214\) −2.34315 4.05845i −0.160174 0.277430i
\(215\) 2.34315 + 4.05845i 0.159801 + 0.276784i
\(216\) 1.58579 0.107899
\(217\) 1.65685 + 2.86976i 0.112475 + 0.194812i
\(218\) −1.10051 + 1.90613i −0.0745356 + 0.129099i
\(219\) 0.171573 0.297173i 0.0115938 0.0200811i
\(220\) −10.3431 −0.697335
\(221\) 0 0
\(222\) −3.17157 −0.212862
\(223\) −6.24264 + 10.8126i −0.418038 + 0.724063i −0.995742 0.0921831i \(-0.970615\pi\)
0.577704 + 0.816246i \(0.303949\pi\)
\(224\) −6.24264 + 10.8126i −0.417104 + 0.722445i
\(225\) −1.50000 2.59808i −0.100000 0.173205i
\(226\) 2.20101 0.146409
\(227\) −8.65685 14.9941i −0.574576 0.995194i −0.996088 0.0883713i \(-0.971834\pi\)
0.421512 0.906823i \(-0.361500\pi\)
\(228\) 2.58579 + 4.47871i 0.171248 + 0.296610i
\(229\) 1.31371 0.0868123 0.0434062 0.999058i \(-0.486179\pi\)
0.0434062 + 0.999058i \(0.486179\pi\)
\(230\) −2.34315 4.05845i −0.154502 0.267606i
\(231\) 2.82843 4.89898i 0.186097 0.322329i
\(232\) −1.58579 + 2.74666i −0.104112 + 0.180327i
\(233\) 6.97056 0.456657 0.228328 0.973584i \(-0.426674\pi\)
0.228328 + 0.973584i \(0.426674\pi\)
\(234\) 0 0
\(235\) 32.9706 2.15076
\(236\) −7.00000 + 12.1244i −0.455661 + 0.789228i
\(237\) 5.65685 9.79796i 0.367452 0.636446i
\(238\) −4.48528 7.76874i −0.290738 0.503572i
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) −4.24264 7.34847i −0.273861 0.474342i
\(241\) 0.171573 + 0.297173i 0.0110520 + 0.0191426i 0.871499 0.490398i \(-0.163149\pi\)
−0.860447 + 0.509541i \(0.829815\pi\)
\(242\) 2.89949 0.186387
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 12.1716 21.0818i 0.779205 1.34962i
\(245\) −1.41421 + 2.44949i −0.0903508 + 0.156492i
\(246\) 2.14214 0.136578
\(247\) 0 0
\(248\) 1.85786 0.117975
\(249\) 1.82843 3.16693i 0.115872 0.200696i
\(250\) −1.17157 + 2.02922i −0.0740968 + 0.128339i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 5.17157 0.325778
\(253\) 4.00000 + 6.92820i 0.251478 + 0.435572i
\(254\) 1.17157 + 2.02922i 0.0735110 + 0.127325i
\(255\) 21.6569 1.35620
\(256\) −1.98528 3.43861i −0.124080 0.214913i
\(257\) 2.17157 3.76127i 0.135459 0.234622i −0.790314 0.612702i \(-0.790082\pi\)
0.925773 + 0.378081i \(0.123416\pi\)
\(258\) −0.343146 + 0.594346i −0.0213633 + 0.0370024i
\(259\) −21.6569 −1.34569
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) −1.65685 + 2.86976i −0.102361 + 0.177294i
\(263\) −6.00000 + 10.3923i −0.369976 + 0.640817i −0.989561 0.144112i \(-0.953967\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(264\) −1.58579 2.74666i −0.0975984 0.169045i
\(265\) −5.65685 −0.347498
\(266\) −1.65685 2.86976i −0.101588 0.175956i
\(267\) 7.41421 + 12.8418i 0.453743 + 0.785905i
\(268\) 12.4853 0.762660
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 0.585786 1.01461i 0.0356498 0.0617473i
\(271\) −13.8995 + 24.0746i −0.844334 + 1.46243i 0.0418640 + 0.999123i \(0.486670\pi\)
−0.886198 + 0.463306i \(0.846663\pi\)
\(272\) 22.9706 1.39279
\(273\) 0 0
\(274\) −4.48528 −0.270966
\(275\) −3.00000 + 5.19615i −0.180907 + 0.313340i
\(276\) −3.65685 + 6.33386i −0.220117 + 0.381253i
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) 3.02944 0.181694
\(279\) −0.585786 1.01461i −0.0350701 0.0607432i
\(280\) 6.34315 + 10.9867i 0.379075 + 0.656578i
\(281\) −21.1716 −1.26299 −0.631495 0.775380i \(-0.717558\pi\)
−0.631495 + 0.775380i \(0.717558\pi\)
\(282\) 2.41421 + 4.18154i 0.143764 + 0.249007i
\(283\) −14.4853 + 25.0892i −0.861061 + 1.49140i 0.00984565 + 0.999952i \(0.496866\pi\)
−0.870906 + 0.491449i \(0.836467\pi\)
\(284\) −1.82843 + 3.16693i −0.108497 + 0.187923i
\(285\) 8.00000 0.473879
\(286\) 0 0
\(287\) 14.6274 0.863429
\(288\) 2.20711 3.82282i 0.130055 0.225262i
\(289\) −20.8137 + 36.0504i −1.22434 + 2.12061i
\(290\) 1.17157 + 2.02922i 0.0687971 + 0.119160i
\(291\) −3.65685 −0.214369
\(292\) −0.313708 0.543359i −0.0183584 0.0317977i
\(293\) 1.07107 + 1.85514i 0.0625724 + 0.108379i 0.895615 0.444831i \(-0.146736\pi\)
−0.833042 + 0.553210i \(0.813403\pi\)
\(294\) −0.414214 −0.0241574
\(295\) 10.8284 + 18.7554i 0.630455 + 1.09198i
\(296\) −6.07107 + 10.5154i −0.352874 + 0.611195i
\(297\) −1.00000 + 1.73205i −0.0580259 + 0.100504i
\(298\) −3.79899 −0.220070
\(299\) 0 0
\(300\) −5.48528 −0.316693
\(301\) −2.34315 + 4.05845i −0.135057 + 0.233925i
\(302\) 0.727922 1.26080i 0.0418872 0.0725508i
\(303\) −3.82843 6.63103i −0.219937 0.380943i
\(304\) 8.48528 0.486664
\(305\) −18.8284 32.6118i −1.07811 1.86735i
\(306\) 1.58579 + 2.74666i 0.0906534 + 0.157016i
\(307\) 22.8284 1.30289 0.651444 0.758697i \(-0.274164\pi\)
0.651444 + 0.758697i \(0.274164\pi\)
\(308\) −5.17157 8.95743i −0.294678 0.510397i
\(309\) −1.17157 + 2.02922i −0.0666485 + 0.115439i
\(310\) 0.686292 1.18869i 0.0389787 0.0675132i
\(311\) −10.6274 −0.602626 −0.301313 0.953525i \(-0.597425\pi\)
−0.301313 + 0.953525i \(0.597425\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) −2.07107 + 3.58719i −0.116877 + 0.202437i
\(315\) 4.00000 6.92820i 0.225374 0.390360i
\(316\) −10.3431 17.9149i −0.581847 1.00779i
\(317\) −8.48528 −0.476581 −0.238290 0.971194i \(-0.576587\pi\)
−0.238290 + 0.971194i \(0.576587\pi\)
\(318\) −0.414214 0.717439i −0.0232279 0.0402320i
\(319\) −2.00000 3.46410i −0.111979 0.193952i
\(320\) −11.7990 −0.659584
\(321\) 5.65685 + 9.79796i 0.315735 + 0.546869i
\(322\) 2.34315 4.05845i 0.130578 0.226168i
\(323\) −10.8284 + 18.7554i −0.602510 + 1.04358i
\(324\) −1.82843 −0.101579
\(325\) 0 0
\(326\) 7.79899 0.431946
\(327\) 2.65685 4.60181i 0.146924 0.254480i
\(328\) 4.10051 7.10228i 0.226413 0.392158i
\(329\) 16.4853 + 28.5533i 0.908863 + 1.57420i
\(330\) −2.34315 −0.128986
\(331\) 13.0711 + 22.6398i 0.718451 + 1.24439i 0.961613 + 0.274408i \(0.0884818\pi\)
−0.243163 + 0.969986i \(0.578185\pi\)
\(332\) −3.34315 5.79050i −0.183479 0.317795i
\(333\) 7.65685 0.419593
\(334\) 0.757359 + 1.31178i 0.0414409 + 0.0717777i
\(335\) 9.65685 16.7262i 0.527610 0.913848i
\(336\) 4.24264 7.34847i 0.231455 0.400892i
\(337\) 9.31371 0.507350 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(338\) 0 0
\(339\) −5.31371 −0.288601
\(340\) 19.7990 34.2929i 1.07375 1.85979i
\(341\) −1.17157 + 2.02922i −0.0634442 + 0.109889i
\(342\) 0.585786 + 1.01461i 0.0316757 + 0.0548639i
\(343\) 16.9706 0.916324
\(344\) 1.31371 + 2.27541i 0.0708304 + 0.122682i
\(345\) 5.65685 + 9.79796i 0.304555 + 0.527504i
\(346\) 4.82843 0.259578
\(347\) 4.34315 + 7.52255i 0.233152 + 0.403832i 0.958734 0.284304i \(-0.0917626\pi\)
−0.725582 + 0.688136i \(0.758429\pi\)
\(348\) 1.82843 3.16693i 0.0980140 0.169765i
\(349\) 1.82843 3.16693i 0.0978735 0.169522i −0.812931 0.582360i \(-0.802129\pi\)
0.910804 + 0.412839i \(0.135463\pi\)
\(350\) 3.51472 0.187870
\(351\) 0 0
\(352\) −8.82843 −0.470557
\(353\) −16.7279 + 28.9736i −0.890337 + 1.54211i −0.0508663 + 0.998705i \(0.516198\pi\)
−0.839471 + 0.543404i \(0.817135\pi\)
\(354\) −1.58579 + 2.74666i −0.0842836 + 0.145983i
\(355\) 2.82843 + 4.89898i 0.150117 + 0.260011i
\(356\) 27.1127 1.43697
\(357\) 10.8284 + 18.7554i 0.573101 + 0.992640i
\(358\) −4.82843 8.36308i −0.255190 0.442003i
\(359\) −34.9706 −1.84568 −0.922838 0.385189i \(-0.874136\pi\)
−0.922838 + 0.385189i \(0.874136\pi\)
\(360\) −2.24264 3.88437i −0.118198 0.204724i
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) 2.89949 5.02207i 0.152394 0.263954i
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −0.970563 −0.0508016
\(366\) 2.75736 4.77589i 0.144129 0.249640i
\(367\) 12.0000 20.7846i 0.626395 1.08495i −0.361874 0.932227i \(-0.617863\pi\)
0.988269 0.152721i \(-0.0488036\pi\)
\(368\) 6.00000 + 10.3923i 0.312772 + 0.541736i
\(369\) −5.17157 −0.269221
\(370\) 4.48528 + 7.76874i 0.233179 + 0.403877i
\(371\) −2.82843 4.89898i −0.146845 0.254342i
\(372\) −2.14214 −0.111065
\(373\) −5.00000 8.66025i −0.258890 0.448411i 0.707055 0.707159i \(-0.250023\pi\)
−0.965945 + 0.258748i \(0.916690\pi\)
\(374\) 3.17157 5.49333i 0.163998 0.284053i
\(375\) 2.82843 4.89898i 0.146059 0.252982i
\(376\) 18.4853 0.953306
\(377\) 0 0
\(378\) 1.17157 0.0602592
\(379\) 0.242641 0.420266i 0.0124636 0.0215876i −0.859726 0.510755i \(-0.829366\pi\)
0.872190 + 0.489167i \(0.162699\pi\)
\(380\) 7.31371 12.6677i 0.375185 0.649840i
\(381\) −2.82843 4.89898i −0.144905 0.250982i
\(382\) −1.37258 −0.0702275
\(383\) 15.4853 + 26.8213i 0.791261 + 1.37050i 0.925187 + 0.379513i \(0.123908\pi\)
−0.133926 + 0.990991i \(0.542758\pi\)
\(384\) −5.27817 9.14207i −0.269351 0.466529i
\(385\) −16.0000 −0.815436
\(386\) −1.10051 1.90613i −0.0560142 0.0970195i
\(387\) 0.828427 1.43488i 0.0421113 0.0729389i
\(388\) −3.34315 + 5.79050i −0.169723 + 0.293968i
\(389\) −26.9706 −1.36746 −0.683731 0.729734i \(-0.739644\pi\)
−0.683731 + 0.729734i \(0.739644\pi\)
\(390\) 0 0
\(391\) −30.6274 −1.54890
\(392\) −0.792893 + 1.37333i −0.0400472 + 0.0693637i
\(393\) 4.00000 6.92820i 0.201773 0.349482i
\(394\) −0.100505 0.174080i −0.00506337 0.00877002i
\(395\) −32.0000 −1.61009
\(396\) 1.82843 + 3.16693i 0.0918819 + 0.159144i
\(397\) 15.4853 + 26.8213i 0.777184 + 1.34612i 0.933559 + 0.358424i \(0.116686\pi\)
−0.156375 + 0.987698i \(0.549981\pi\)
\(398\) −8.97056 −0.449654
\(399\) 4.00000 + 6.92820i 0.200250 + 0.346844i
\(400\) −4.50000 + 7.79423i −0.225000 + 0.389711i
\(401\) 13.0711 22.6398i 0.652738 1.13058i −0.329718 0.944080i \(-0.606954\pi\)
0.982456 0.186496i \(-0.0597131\pi\)
\(402\) 2.82843 0.141069
\(403\) 0 0
\(404\) −14.0000 −0.696526
\(405\) −1.41421 + 2.44949i −0.0702728 + 0.121716i
\(406\) −1.17157 + 2.02922i −0.0581442 + 0.100709i
\(407\) −7.65685 13.2621i −0.379536 0.657376i
\(408\) 12.1421 0.601125
\(409\) −17.4853 30.2854i −0.864592 1.49752i −0.867452 0.497521i \(-0.834244\pi\)
0.00286068 0.999996i \(-0.499089\pi\)
\(410\) −3.02944 5.24714i −0.149613 0.259138i
\(411\) 10.8284 0.534127
\(412\) 2.14214 + 3.71029i 0.105535 + 0.182793i
\(413\) −10.8284 + 18.7554i −0.532832 + 0.922892i
\(414\) −0.828427 + 1.43488i −0.0407150 + 0.0705204i
\(415\) −10.3431 −0.507725
\(416\) 0 0
\(417\) −7.31371 −0.358154
\(418\) 1.17157 2.02922i 0.0573035 0.0992526i
\(419\) −7.31371 + 12.6677i −0.357298 + 0.618858i −0.987508 0.157566i \(-0.949635\pi\)
0.630210 + 0.776424i \(0.282969\pi\)
\(420\) −7.31371 12.6677i −0.356872 0.618121i
\(421\) −37.3137 −1.81856 −0.909279 0.416186i \(-0.863366\pi\)
−0.909279 + 0.416186i \(0.863366\pi\)
\(422\) −2.48528 4.30463i −0.120982 0.209546i
\(423\) −5.82843 10.0951i −0.283388 0.490842i
\(424\) −3.17157 −0.154025
\(425\) −11.4853 19.8931i −0.557118 0.964957i
\(426\) −0.414214 + 0.717439i −0.0200687 + 0.0347600i
\(427\) 18.8284 32.6118i 0.911171 1.57820i
\(428\) 20.6863 0.999910
\(429\) 0 0
\(430\) 1.94113 0.0936094
\(431\) 4.17157 7.22538i 0.200938 0.348034i −0.747893 0.663819i \(-0.768934\pi\)
0.948831 + 0.315785i \(0.102268\pi\)
\(432\) −1.50000 + 2.59808i −0.0721688 + 0.125000i
\(433\) 10.6569 + 18.4582i 0.512136 + 0.887045i 0.999901 + 0.0140703i \(0.00447886\pi\)
−0.487765 + 0.872975i \(0.662188\pi\)
\(434\) 1.37258 0.0658861
\(435\) −2.82843 4.89898i −0.135613 0.234888i
\(436\) −4.85786 8.41407i −0.232650 0.402961i
\(437\) −11.3137 −0.541208
\(438\) −0.0710678 0.123093i −0.00339575 0.00588161i
\(439\) −8.48528 + 14.6969i −0.404980 + 0.701447i −0.994319 0.106439i \(-0.966055\pi\)
0.589339 + 0.807886i \(0.299388\pi\)
\(440\) −4.48528 + 7.76874i −0.213827 + 0.370360i
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −25.9411 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(444\) 7.00000 12.1244i 0.332205 0.575396i
\(445\) 20.9706 36.3221i 0.994100 1.72183i
\(446\) 2.58579 + 4.47871i 0.122441 + 0.212073i
\(447\) 9.17157 0.433801
\(448\) −5.89949 10.2182i −0.278725 0.482766i
\(449\) −15.8995 27.5387i −0.750344 1.29963i −0.947656 0.319293i \(-0.896555\pi\)
0.197313 0.980341i \(-0.436779\pi\)
\(450\) −1.24264 −0.0585786
\(451\) 5.17157 + 8.95743i 0.243520 + 0.421789i
\(452\) −4.85786 + 8.41407i −0.228495 + 0.395764i
\(453\) −1.75736 + 3.04384i −0.0825679 + 0.143012i
\(454\) −7.17157 −0.336579
\(455\) 0 0
\(456\) 4.48528 0.210043
\(457\) −3.82843 + 6.63103i −0.179086 + 0.310187i −0.941568 0.336823i \(-0.890647\pi\)
0.762482 + 0.647010i \(0.223981\pi\)
\(458\) 0.272078 0.471253i 0.0127134 0.0220202i
\(459\) −3.82843 6.63103i −0.178696 0.309510i
\(460\) 20.6863 0.964503
\(461\) 2.58579 + 4.47871i 0.120432 + 0.208594i 0.919938 0.392064i \(-0.128239\pi\)
−0.799506 + 0.600658i \(0.794905\pi\)
\(462\) −1.17157 2.02922i −0.0545065 0.0944080i
\(463\) 24.4853 1.13793 0.568964 0.822363i \(-0.307344\pi\)
0.568964 + 0.822363i \(0.307344\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) −1.65685 + 2.86976i −0.0768348 + 0.133082i
\(466\) 1.44365 2.50048i 0.0668758 0.115832i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) 19.3137 0.891824
\(470\) 6.82843 11.8272i 0.314972 0.545547i
\(471\) 5.00000 8.66025i 0.230388 0.399043i
\(472\) 6.07107 + 10.5154i 0.279444 + 0.484010i
\(473\) −3.31371 −0.152364
\(474\) −2.34315 4.05845i −0.107624 0.186411i
\(475\) −4.24264 7.34847i −0.194666 0.337171i
\(476\) 39.5980 1.81497
\(477\) 1.00000 + 1.73205i 0.0457869 + 0.0793052i
\(478\) −0.414214 + 0.717439i −0.0189457 + 0.0328149i
\(479\) 12.6569 21.9223i 0.578306 1.00166i −0.417367 0.908738i \(-0.637047\pi\)
0.995674 0.0929182i \(-0.0296195\pi\)
\(480\) −12.4853 −0.569873
\(481\) 0 0
\(482\) 0.142136 0.00647410
\(483\) −5.65685 + 9.79796i −0.257396 + 0.445823i
\(484\) −6.39949 + 11.0843i −0.290886 + 0.503830i
\(485\) 5.17157 + 8.95743i 0.234829 + 0.406736i
\(486\) −0.414214 −0.0187891
\(487\) −3.89949 6.75412i −0.176703 0.306059i 0.764046 0.645161i \(-0.223210\pi\)
−0.940749 + 0.339103i \(0.889877\pi\)
\(488\) −10.5563 18.2841i −0.477863 0.827684i
\(489\) −18.8284 −0.851451
\(490\) 0.585786 + 1.01461i 0.0264631 + 0.0458355i
\(491\) −15.3137 + 26.5241i −0.691098 + 1.19702i 0.280380 + 0.959889i \(0.409539\pi\)
−0.971478 + 0.237128i \(0.923794\pi\)
\(492\) −4.72792 + 8.18900i −0.213151 + 0.369189i
\(493\) 15.3137 0.689695
\(494\) 0 0
\(495\) 5.65685 0.254257
\(496\) −1.75736 + 3.04384i −0.0789078 + 0.136672i
\(497\) −2.82843 + 4.89898i −0.126872 + 0.219749i
\(498\) −0.757359 1.31178i −0.0339381 0.0587825i
\(499\) −26.1421 −1.17028 −0.585141 0.810931i \(-0.698961\pi\)
−0.585141 + 0.810931i \(0.698961\pi\)
\(500\) −5.17157 8.95743i −0.231280 0.400588i
\(501\) −1.82843 3.16693i −0.0816881 0.141488i
\(502\) 0 0
\(503\) 3.65685 + 6.33386i 0.163051 + 0.282413i 0.935961 0.352102i \(-0.114533\pi\)
−0.772910 + 0.634515i \(0.781200\pi\)
\(504\) 2.24264 3.88437i 0.0998952 0.173023i
\(505\) −10.8284 + 18.7554i −0.481859 + 0.834604i
\(506\) 3.31371 0.147312
\(507\) 0 0
\(508\) −10.3431 −0.458903
\(509\) 5.89949 10.2182i 0.261491 0.452915i −0.705148 0.709060i \(-0.749119\pi\)
0.966638 + 0.256146i \(0.0824527\pi\)
\(510\) 4.48528 7.76874i 0.198612 0.344005i
\(511\) −0.485281 0.840532i −0.0214676 0.0371829i
\(512\) −22.7574 −1.00574
\(513\) −1.41421 2.44949i −0.0624391 0.108148i
\(514\) −0.899495 1.55797i −0.0396750 0.0687192i
\(515\) 6.62742 0.292039
\(516\) −1.51472 2.62357i −0.0666818 0.115496i
\(517\) −11.6569 + 20.1903i −0.512668 + 0.887967i
\(518\) −4.48528 + 7.76874i −0.197072 + 0.341339i
\(519\) −11.6569 −0.511679
\(520\) 0 0
\(521\) 25.3137 1.10901 0.554507 0.832179i \(-0.312907\pi\)
0.554507 + 0.832179i \(0.312907\pi\)
\(522\) 0.414214 0.717439i 0.0181296 0.0314014i
\(523\) 7.65685 13.2621i 0.334811 0.579909i −0.648638 0.761097i \(-0.724661\pi\)
0.983448 + 0.181188i \(0.0579942\pi\)
\(524\) −7.31371 12.6677i −0.319501 0.553392i
\(525\) −8.48528 −0.370328
\(526\) 2.48528 + 4.30463i 0.108363 + 0.187691i
\(527\) −4.48528 7.76874i −0.195382 0.338411i
\(528\) 6.00000 0.261116
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) −1.17157 + 2.02922i −0.0508899 + 0.0881438i
\(531\) 3.82843 6.63103i 0.166140 0.287762i
\(532\) 14.6274 0.634179
\(533\) 0 0
\(534\) 6.14214 0.265796
\(535\) 16.0000 27.7128i 0.691740 1.19813i
\(536\) 5.41421 9.37769i 0.233858 0.405055i
\(537\) 11.6569 + 20.1903i 0.503030 + 0.871274i
\(538\) −7.45584 −0.321444
\(539\) −1.00000 1.73205i −0.0430730 0.0746047i
\(540\) 2.58579 + 4.47871i 0.111275 + 0.192733i
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 5.75736 + 9.97204i 0.247300 + 0.428336i
\(543\) −7.00000 + 12.1244i −0.300399 + 0.520306i
\(544\) 16.8995 29.2708i 0.724560 1.25497i
\(545\) −15.0294 −0.643790
\(546\) 0 0
\(547\) 23.3137 0.996822 0.498411 0.866941i \(-0.333917\pi\)
0.498411 + 0.866941i \(0.333917\pi\)
\(548\) 9.89949 17.1464i 0.422885 0.732459i
\(549\) −6.65685 + 11.5300i −0.284108 + 0.492089i
\(550\) 1.24264 + 2.15232i 0.0529864 + 0.0917751i
\(551\) 5.65685 0.240990
\(552\) 3.17157 + 5.49333i 0.134991 + 0.233811i
\(553\) −16.0000 27.7128i −0.680389 1.17847i
\(554\) 0.828427 0.0351965
\(555\) −10.8284 18.7554i −0.459641 0.796122i
\(556\) −6.68629 + 11.5810i −0.283562 + 0.491144i
\(557\) −3.89949 + 6.75412i −0.165227 + 0.286181i −0.936736 0.350037i \(-0.886169\pi\)
0.771509 + 0.636218i \(0.219502\pi\)
\(558\) −0.485281 −0.0205436
\(559\) 0 0
\(560\) −24.0000 −1.01419
\(561\) −7.65685 + 13.2621i −0.323273 + 0.559925i
\(562\) −4.38478 + 7.59466i −0.184961 + 0.320361i
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) −21.3137 −0.897469
\(565\) 7.51472 + 13.0159i 0.316147 + 0.547582i
\(566\) 6.00000 + 10.3923i 0.252199 + 0.436821i
\(567\) −2.82843 −0.118783
\(568\) 1.58579 + 2.74666i 0.0665381 + 0.115247i
\(569\) 21.4853 37.2136i 0.900710 1.56008i 0.0741351 0.997248i \(-0.476380\pi\)
0.826575 0.562827i \(-0.190286\pi\)
\(570\) 1.65685 2.86976i 0.0693980 0.120201i
\(571\) −12.9706 −0.542801 −0.271401 0.962466i \(-0.587487\pi\)
−0.271401 + 0.962466i \(0.587487\pi\)
\(572\) 0 0
\(573\) 3.31371 0.138432
\(574\) 3.02944 5.24714i 0.126446 0.219011i
\(575\) 6.00000 10.3923i 0.250217 0.433389i
\(576\) 2.08579 + 3.61269i 0.0869078 + 0.150529i
\(577\) 31.9411 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(578\) 8.62132 + 14.9326i 0.358600 + 0.621113i
\(579\) 2.65685 + 4.60181i 0.110415 + 0.191245i
\(580\) −10.3431 −0.429476
\(581\) −5.17157 8.95743i −0.214553 0.371617i
\(582\) −0.757359 + 1.31178i −0.0313936 + 0.0543752i
\(583\) 2.00000 3.46410i 0.0828315 0.143468i
\(584\) −0.544156 −0.0225173
\(585\) 0 0
\(586\) 0.887302 0.0366541
\(587\) −5.48528 + 9.50079i −0.226402 + 0.392139i −0.956739 0.290947i \(-0.906030\pi\)
0.730337 + 0.683087i \(0.239363\pi\)
\(588\) 0.914214 1.58346i 0.0377015 0.0653010i
\(589\) −1.65685 2.86976i −0.0682695 0.118246i
\(590\) 8.97056 0.369312
\(591\) 0.242641 + 0.420266i 0.00998090 + 0.0172874i
\(592\) −11.4853 19.8931i −0.472042 0.817601i
\(593\) 20.4853 0.841230 0.420615 0.907239i \(-0.361814\pi\)
0.420615 + 0.907239i \(0.361814\pi\)
\(594\) 0.414214 + 0.717439i 0.0169954 + 0.0294369i
\(595\) 30.6274 53.0482i 1.25560 2.17477i
\(596\) 8.38478 14.5229i 0.343454 0.594879i
\(597\) 21.6569 0.886356
\(598\) 0 0
\(599\) −23.3137 −0.952572 −0.476286 0.879290i \(-0.658017\pi\)
−0.476286 + 0.879290i \(0.658017\pi\)
\(600\) −2.37868 + 4.11999i −0.0971092 + 0.168198i
\(601\) 0.313708 0.543359i 0.0127964 0.0221641i −0.859556 0.511041i \(-0.829260\pi\)
0.872353 + 0.488877i \(0.162593\pi\)
\(602\) 0.970563 + 1.68106i 0.0395572 + 0.0685151i
\(603\) −6.82843 −0.278075
\(604\) 3.21320 + 5.56543i 0.130743 + 0.226454i
\(605\) 9.89949 + 17.1464i 0.402472 + 0.697101i
\(606\) −3.17157 −0.128836
\(607\) −20.9706 36.3221i −0.851169 1.47427i −0.880154 0.474688i \(-0.842561\pi\)
0.0289853 0.999580i \(-0.490772\pi\)
\(608\) 6.24264 10.8126i 0.253173 0.438508i
\(609\) 2.82843 4.89898i 0.114614 0.198517i
\(610\) −15.5980 −0.631544
\(611\) 0 0
\(612\) −14.0000 −0.565916
\(613\) −23.8284 + 41.2720i −0.962421 + 1.66696i −0.246031 + 0.969262i \(0.579127\pi\)
−0.716390 + 0.697700i \(0.754207\pi\)
\(614\) 4.72792 8.18900i 0.190803 0.330481i
\(615\) 7.31371 + 12.6677i 0.294917 + 0.510812i
\(616\) −8.97056 −0.361434
\(617\) −17.4142 30.1623i −0.701070 1.21429i −0.968091 0.250598i \(-0.919373\pi\)
0.267021 0.963691i \(-0.413961\pi\)
\(618\) 0.485281 + 0.840532i 0.0195209 + 0.0338112i
\(619\) −23.7990 −0.956562 −0.478281 0.878207i \(-0.658740\pi\)
−0.478281 + 0.878207i \(0.658740\pi\)
\(620\) 3.02944 + 5.24714i 0.121665 + 0.210730i
\(621\) 2.00000 3.46410i 0.0802572 0.139010i
\(622\) −2.20101 + 3.81226i −0.0882525 + 0.152858i
\(623\) 41.9411 1.68034
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 1.24264 2.15232i 0.0496659 0.0860239i
\(627\) −2.82843 + 4.89898i −0.112956 + 0.195646i
\(628\) −9.14214 15.8346i −0.364811 0.631871i
\(629\) 58.6274 2.33763
\(630\) −1.65685 2.86976i −0.0660107 0.114334i
\(631\) 21.5563 + 37.3367i 0.858145 + 1.48635i 0.873697 + 0.486471i \(0.161716\pi\)
−0.0155519 + 0.999879i \(0.504951\pi\)
\(632\) −17.9411 −0.713660
\(633\) 6.00000 + 10.3923i 0.238479 + 0.413057i
\(634\) −1.75736 + 3.04384i −0.0697937 + 0.120886i
\(635\) −8.00000 + 13.8564i −0.317470 + 0.549875i
\(636\) 3.65685 0.145004
\(637\) 0 0
\(638\) −1.65685 −0.0655955
\(639\) 1.00000 1.73205i 0.0395594 0.0685189i
\(640\) −14.9289 + 25.8577i −0.590118 + 1.02211i
\(641\) −15.1421 26.2269i −0.598078 1.03590i −0.993105 0.117232i \(-0.962598\pi\)
0.395026 0.918670i \(-0.370736\pi\)
\(642\) 4.68629 0.184953
\(643\) 11.4142 + 19.7700i 0.450133 + 0.779653i 0.998394 0.0566545i \(-0.0180434\pi\)
−0.548261 + 0.836307i \(0.684710\pi\)
\(644\) 10.3431 + 17.9149i 0.407577 + 0.705944i
\(645\) −4.68629 −0.184523
\(646\) 4.48528 + 7.76874i 0.176471 + 0.305657i
\(647\) −5.65685 + 9.79796i −0.222394 + 0.385198i −0.955534 0.294880i \(-0.904720\pi\)
0.733140 + 0.680077i \(0.238054\pi\)
\(648\) −0.792893 + 1.37333i −0.0311478 + 0.0539496i
\(649\) −15.3137 −0.601116
\(650\) 0 0
\(651\) −3.31371 −0.129874
\(652\) −17.2132 + 29.8141i −0.674121 + 1.16761i
\(653\) 12.6569 21.9223i 0.495301 0.857886i −0.504684 0.863304i \(-0.668391\pi\)
0.999985 + 0.00541749i \(0.00172445\pi\)
\(654\) −1.10051 1.90613i −0.0430332 0.0745356i
\(655\) −22.6274 −0.884126
\(656\) 7.75736 + 13.4361i 0.302874 + 0.524593i
\(657\) 0.171573 + 0.297173i 0.00669370 + 0.0115938i
\(658\) 13.6569 0.532400
\(659\) 23.6569 + 40.9749i 0.921540 + 1.59615i 0.797033 + 0.603936i \(0.206402\pi\)
0.124507 + 0.992219i \(0.460265\pi\)
\(660\) 5.17157 8.95743i 0.201303 0.348667i
\(661\) −17.4853 + 30.2854i −0.680099 + 1.17797i 0.294852 + 0.955543i \(0.404730\pi\)
−0.974950 + 0.222422i \(0.928604\pi\)
\(662\) 10.8284 0.420859
\(663\) 0 0
\(664\) −5.79899 −0.225044
\(665\) 11.3137 19.5959i 0.438727 0.759897i
\(666\) 1.58579 2.74666i 0.0614480 0.106431i
\(667\) 4.00000 + 6.92820i 0.154881 + 0.268261i
\(668\) −6.68629 −0.258700
\(669\) −6.24264 10.8126i −0.241354 0.418038i
\(670\) −4.00000 6.92820i −0.154533 0.267660i
\(671\) 26.6274 1.02794
\(672\) −6.24264 10.8126i −0.240815 0.417104i
\(673\) −8.31371 + 14.3998i −0.320470 + 0.555070i −0.980585 0.196094i \(-0.937174\pi\)
0.660115 + 0.751164i \(0.270507\pi\)
\(674\) 1.92893 3.34101i 0.0742997 0.128691i
\(675\) 3.00000 0.115470
\(676\) 0 0
\(677\) 26.6863 1.02564 0.512819 0.858497i \(-0.328601\pi\)
0.512819 + 0.858497i \(0.328601\pi\)
\(678\) −1.10051 + 1.90613i −0.0422646 + 0.0732045i
\(679\) −5.17157 + 8.95743i −0.198467 + 0.343754i
\(680\) −17.1716 29.7420i −0.658500 1.14056i
\(681\) 17.3137 0.663463
\(682\) 0.485281 + 0.840532i 0.0185824 + 0.0321856i
\(683\) 23.9706 + 41.5182i 0.917208 + 1.58865i 0.803636 + 0.595121i \(0.202896\pi\)
0.113572 + 0.993530i \(0.463771\pi\)
\(684\) −5.17157 −0.197740
\(685\) −15.3137 26.5241i −0.585107 1.01343i
\(686\) 3.51472 6.08767i 0.134193 0.232428i
\(687\) −0.656854 + 1.13770i −0.0250606 + 0.0434062i
\(688\) −4.97056 −0.189501
\(689\) 0 0
\(690\) 4.68629 0.178404
\(691\) −2.92893 + 5.07306i −0.111422 + 0.192988i −0.916344 0.400392i \(-0.868874\pi\)
0.804922 + 0.593381i \(0.202207\pi\)
\(692\) −10.6569 + 18.4582i −0.405113 + 0.701676i
\(693\) 2.82843 + 4.89898i 0.107443 + 0.186097i
\(694\) 3.59798 0.136577
\(695\) 10.3431 + 17.9149i 0.392338 + 0.679549i
\(696\) −1.58579 2.74666i −0.0601091 0.104112i
\(697\) −39.5980 −1.49988
\(698\) −0.757359 1.31178i −0.0286665 0.0496518i
\(699\) −3.48528 + 6.03668i −0.131825 + 0.228328i
\(700\) −7.75736 + 13.4361i −0.293201 + 0.507838i
\(701\) 5.02944 0.189959 0.0949796 0.995479i \(-0.469721\pi\)
0.0949796 + 0.995479i \(0.469721\pi\)
\(702\) 0 0
\(703\) 21.6569 0.816804
\(704\) 4.17157 7.22538i 0.157222 0.272317i
\(705\) −16.4853 + 28.5533i −0.620872 + 1.07538i
\(706\) 6.92893 + 12.0013i 0.260774 + 0.451673i
\(707\) −21.6569 −0.814490
\(708\) −7.00000 12.1244i −0.263076 0.455661i
\(709\) −2.31371 4.00746i −0.0868931 0.150503i 0.819303 0.573360i \(-0.194361\pi\)
−0.906196 + 0.422857i \(0.861027\pi\)
\(710\) 2.34315 0.0879367
\(711\) 5.65685 + 9.79796i 0.212149 + 0.367452i
\(712\) 11.7574 20.3643i 0.440626 0.763186i
\(713\) 2.34315 4.05845i 0.0877515 0.151990i
\(714\) 8.97056 0.335715
\(715\) 0 0
\(716\) 42.6274 1.59306
\(717\) 1.00000 1.73205i 0.0373457 0.0646846i
\(718\) −7.24264 + 12.5446i −0.270293 + 0.468161i
\(719\) 14.9706 + 25.9298i 0.558308 + 0.967017i 0.997638 + 0.0686918i \(0.0218825\pi\)
−0.439330 + 0.898326i \(0.644784\pi\)
\(720\) 8.48528 0.316228
\(721\) 3.31371 + 5.73951i 0.123409 + 0.213751i
\(722\) −2.27817 3.94591i −0.0847849 0.146852i
\(723\) −0.343146 −0.0127617
\(724\) 12.7990 + 22.1685i 0.475671 + 0.823886i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) −1.44975 + 2.51104i −0.0538052 + 0.0931933i
\(727\) −10.3431 −0.383606 −0.191803 0.981433i \(-0.561433\pi\)
−0.191803 + 0.981433i \(0.561433\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −0.201010 + 0.348160i −0.00743972 + 0.0128860i
\(731\) 6.34315 10.9867i 0.234610 0.406356i
\(732\) 12.1716 + 21.0818i 0.449874 + 0.779205i
\(733\) 36.6274 1.35286 0.676432 0.736505i \(-0.263525\pi\)
0.676432 + 0.736505i \(0.263525\pi\)
\(734\) −4.97056 8.60927i −0.183467 0.317774i
\(735\) −1.41421 2.44949i −0.0521641 0.0903508i
\(736\) 17.6569 0.650840
\(737\) 6.82843 + 11.8272i 0.251528 + 0.435660i
\(738\) −1.07107 + 1.85514i −0.0394266 + 0.0682888i
\(739\) −9.07107 + 15.7116i −0.333685 + 0.577959i −0.983231 0.182363i \(-0.941625\pi\)
0.649547 + 0.760322i \(0.274959\pi\)
\(740\) −39.5980 −1.45565
\(741\) 0 0
\(742\) −2.34315 −0.0860196
\(743\) 1.00000 1.73205i 0.0366864 0.0635428i −0.847099 0.531435i \(-0.821653\pi\)
0.883786 + 0.467892i \(0.154986\pi\)
\(744\) −0.928932 + 1.60896i −0.0340563 + 0.0589873i
\(745\) −12.9706 22.4657i −0.475205 0.823079i
\(746\) −4.14214 −0.151654
\(747\) 1.82843 + 3.16693i 0.0668987 + 0.115872i
\(748\) 14.0000 + 24.2487i 0.511891 + 0.886621i
\(749\) 32.0000 1.16925
\(750\) −1.17157 2.02922i −0.0427798 0.0740968i
\(751\) 0.485281 0.840532i 0.0177082 0.0306714i −0.857036 0.515257i \(-0.827696\pi\)
0.874744 + 0.484586i \(0.161030\pi\)
\(752\) −17.4853 + 30.2854i −0.637623 + 1.10439i
\(753\) 0 0
\(754\) 0 0
\(755\) 9.94113 0.361795
\(756\) −2.58579 + 4.47871i −0.0940441 + 0.162889i
\(757\) −25.9706 + 44.9823i −0.943916 + 1.63491i −0.186009 + 0.982548i \(0.559555\pi\)
−0.757907 + 0.652363i \(0.773778\pi\)
\(758\) −0.100505 0.174080i −0.00365051 0.00632287i
\(759\) −8.00000 −0.290382
\(760\) −6.34315 10.9867i −0.230090 0.398528i
\(761\) 16.2426 + 28.1331i 0.588795 + 1.01982i 0.994391 + 0.105771i \(0.0337309\pi\)
−0.405595 + 0.914053i \(0.632936\pi\)
\(762\) −2.34315 −0.0848832
\(763\) −7.51472 13.0159i −0.272051 0.471206i
\(764\) 3.02944 5.24714i 0.109601 0.189835i
\(765\) −10.8284 + 18.7554i −0.391503 + 0.678102i
\(766\) 12.8284 0.463510
\(767\) 0 0
\(768\) 3.97056 0.143275
\(769\) 21.0000 36.3731i 0.757279 1.31165i −0.186954 0.982369i \(-0.559861\pi\)
0.944233 0.329278i \(-0.106805\pi\)
\(770\) −3.31371 + 5.73951i −0.119418 + 0.206838i
\(771\) 2.17157 + 3.76127i 0.0782073 + 0.135459i
\(772\) 9.71573 0.349677
\(773\) 17.0711 + 29.5680i 0.614004 + 1.06349i 0.990558 + 0.137091i \(0.0437753\pi\)
−0.376555 + 0.926394i \(0.622891\pi\)
\(774\) −0.343146 0.594346i −0.0123341