Defining parameters
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(121\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(507, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 150 | 50 | 100 |
Cusp forms | 94 | 50 | 44 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(507, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(507, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(507, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)