Defining parameters
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(121\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(507))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 74 | 25 | 49 |
Cusp forms | 47 | 25 | 22 |
Eisenstein series | 27 | 0 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(9\) | |
Minus space | \(-\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(507))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(507))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(507)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)