Properties

Label 507.1.n.a
Level $507$
Weight $1$
Character orbit 507.n
Analytic conductor $0.253$
Analytic rank $0$
Dimension $12$
Projective image $D_{26}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 507.n (of order \(26\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.253025961405\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{26})\)
Defining polynomial: \(x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{26}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{26} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{26}^{7} q^{3} -\zeta_{26}^{2} q^{4} + ( \zeta_{26}^{9} + \zeta_{26}^{10} ) q^{7} -\zeta_{26} q^{9} +O(q^{10})\) \( q + \zeta_{26}^{7} q^{3} -\zeta_{26}^{2} q^{4} + ( \zeta_{26}^{9} + \zeta_{26}^{10} ) q^{7} -\zeta_{26} q^{9} -\zeta_{26}^{9} q^{12} - q^{13} + \zeta_{26}^{4} q^{16} + ( \zeta_{26} + \zeta_{26}^{12} ) q^{19} + ( -\zeta_{26}^{3} - \zeta_{26}^{4} ) q^{21} + \zeta_{26}^{5} q^{25} -\zeta_{26}^{8} q^{27} + ( -\zeta_{26}^{11} - \zeta_{26}^{12} ) q^{28} + ( \zeta_{26}^{6} - \zeta_{26}^{10} ) q^{31} + \zeta_{26}^{3} q^{36} + ( -\zeta_{26}^{5} + \zeta_{26}^{11} ) q^{37} -\zeta_{26}^{7} q^{39} + ( \zeta_{26}^{2} + \zeta_{26}^{8} ) q^{43} + \zeta_{26}^{11} q^{48} + ( -\zeta_{26}^{5} - \zeta_{26}^{6} - \zeta_{26}^{7} ) q^{49} + \zeta_{26}^{2} q^{52} + ( -\zeta_{26}^{6} + \zeta_{26}^{8} ) q^{57} + ( -\zeta_{26}^{8} - \zeta_{26}^{12} ) q^{61} + ( -\zeta_{26}^{10} - \zeta_{26}^{11} ) q^{63} -\zeta_{26}^{6} q^{64} + ( \zeta_{26}^{3} + \zeta_{26}^{6} ) q^{67} + ( \zeta_{26}^{3} + \zeta_{26}^{8} ) q^{73} + \zeta_{26}^{12} q^{75} + ( \zeta_{26} - \zeta_{26}^{3} ) q^{76} + ( -\zeta_{26}^{4} + \zeta_{26}^{5} ) q^{79} + \zeta_{26}^{2} q^{81} + ( \zeta_{26}^{5} + \zeta_{26}^{6} ) q^{84} + ( -\zeta_{26}^{9} - \zeta_{26}^{10} ) q^{91} + ( -1 + \zeta_{26}^{4} ) q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + q^{3} + q^{4} - q^{9} + O(q^{10}) \) \( 12q + q^{3} + q^{4} - q^{9} - q^{12} - 12q^{13} - q^{16} + q^{25} + q^{27} + q^{36} - q^{39} - 2q^{43} + q^{48} - q^{49} - q^{52} + 2q^{61} + q^{64} - q^{75} + 2q^{79} - q^{81} - 13q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(-\zeta_{26}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
38.1
0.970942 0.239316i
−0.885456 + 0.464723i
0.748511 0.663123i
−0.568065 + 0.822984i
0.354605 0.935016i
−0.120537 + 0.992709i
−0.120537 0.992709i
0.354605 + 0.935016i
−0.568065 0.822984i
0.748511 + 0.663123i
−0.885456 0.464723i
0.970942 + 0.239316i
0 −0.120537 0.992709i −0.885456 + 0.464723i 0 0 −1.31658 1.48611i 0 −0.970942 + 0.239316i 0
77.1 0 0.970942 0.239316i −0.568065 + 0.822984i 0 0 0.475142 + 0.0576926i 0 0.885456 0.464723i 0
116.1 0 0.354605 + 0.935016i −0.120537 + 0.992709i 0 0 1.53901 1.06230i 0 −0.748511 + 0.663123i 0
155.1 0 −0.885456 + 0.464723i 0.354605 + 0.935016i 0 0 −0.222431 + 0.902438i 0 0.568065 0.822984i 0
194.1 0 −0.568065 0.822984i 0.748511 + 0.663123i 0 0 0.764919 + 1.45743i 0 −0.354605 + 0.935016i 0
233.1 0 0.748511 0.663123i 0.970942 + 0.239316i 0 0 −1.24006 0.470293i 0 0.120537 0.992709i 0
272.1 0 0.748511 + 0.663123i 0.970942 0.239316i 0 0 −1.24006 + 0.470293i 0 0.120537 + 0.992709i 0
311.1 0 −0.568065 + 0.822984i 0.748511 0.663123i 0 0 0.764919 1.45743i 0 −0.354605 0.935016i 0
350.1 0 −0.885456 0.464723i 0.354605 0.935016i 0 0 −0.222431 0.902438i 0 0.568065 + 0.822984i 0
389.1 0 0.354605 0.935016i −0.120537 0.992709i 0 0 1.53901 + 1.06230i 0 −0.748511 0.663123i 0
428.1 0 0.970942 + 0.239316i −0.568065 0.822984i 0 0 0.475142 0.0576926i 0 0.885456 + 0.464723i 0
467.1 0 −0.120537 + 0.992709i −0.885456 0.464723i 0 0 −1.31658 + 1.48611i 0 −0.970942 0.239316i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 467.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
169.h even 26 1 inner
507.n odd 26 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.1.n.a 12
3.b odd 2 1 CM 507.1.n.a 12
169.h even 26 1 inner 507.1.n.a 12
507.n odd 26 1 inner 507.1.n.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.1.n.a 12 1.a even 1 1 trivial
507.1.n.a 12 3.b odd 2 1 CM
507.1.n.a 12 169.h even 26 1 inner
507.1.n.a 12 507.n odd 26 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(507, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \)
$3$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} \)
$5$ \( T^{12} \)
$7$ \( 13 - 39 T + 13 T^{2} + 39 T^{4} + 39 T^{5} + 13 T^{8} + T^{12} \)
$11$ \( T^{12} \)
$13$ \( ( 1 + T )^{12} \)
$17$ \( T^{12} \)
$19$ \( 13 + 91 T^{2} + 182 T^{4} + 156 T^{6} + 65 T^{8} + 13 T^{10} + T^{12} \)
$23$ \( T^{12} \)
$29$ \( T^{12} \)
$31$ \( 13 + 26 T - 65 T^{3} + 13 T^{4} + 52 T^{6} - 13 T^{9} + T^{12} \)
$37$ \( 13 - 39 T + 13 T^{2} + 39 T^{4} + 39 T^{5} + 13 T^{8} + T^{12} \)
$41$ \( T^{12} \)
$43$ \( 1 + 7 T + 23 T^{2} + 18 T^{3} + 9 T^{4} - 15 T^{5} + 12 T^{6} + 6 T^{7} + 3 T^{8} + 8 T^{9} + 4 T^{10} + 2 T^{11} + T^{12} \)
$47$ \( T^{12} \)
$53$ \( T^{12} \)
$59$ \( T^{12} \)
$61$ \( 1 + 6 T + 23 T^{2} + 21 T^{3} - 4 T^{4} + 2 T^{5} - T^{6} - 6 T^{7} + 16 T^{8} - 8 T^{9} + 4 T^{10} - 2 T^{11} + T^{12} \)
$67$ \( 13 + 65 T + 156 T^{2} + 182 T^{3} + 91 T^{4} + 13 T^{5} + T^{12} \)
$71$ \( T^{12} \)
$73$ \( 13 - 65 T + 156 T^{2} - 182 T^{3} + 91 T^{4} - 13 T^{5} + T^{12} \)
$79$ \( 1 + 6 T + 10 T^{2} - 5 T^{3} + 35 T^{4} - 24 T^{5} + 12 T^{6} + 20 T^{7} - 10 T^{8} + 5 T^{9} + 4 T^{10} - 2 T^{11} + T^{12} \)
$83$ \( T^{12} \)
$89$ \( T^{12} \)
$97$ \( T^{12} \)
show more
show less