Properties

Label 5054.2.a.g
Level $5054$
Weight $2$
Character orbit 5054.a
Self dual yes
Analytic conductor $40.356$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5054 = 2 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5054.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(40.3563931816\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Defining polynomial: \(x^{2} - x - 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} + ( -1 - \beta ) q^{5} -\beta q^{6} + q^{7} - q^{8} + ( -2 + \beta ) q^{9} +O(q^{10})\) \( q - q^{2} + \beta q^{3} + q^{4} + ( -1 - \beta ) q^{5} -\beta q^{6} + q^{7} - q^{8} + ( -2 + \beta ) q^{9} + ( 1 + \beta ) q^{10} -3 \beta q^{11} + \beta q^{12} + ( 2 - 4 \beta ) q^{13} - q^{14} + ( -1 - 2 \beta ) q^{15} + q^{16} + ( 4 - 2 \beta ) q^{17} + ( 2 - \beta ) q^{18} + ( -1 - \beta ) q^{20} + \beta q^{21} + 3 \beta q^{22} + ( -4 + 8 \beta ) q^{23} -\beta q^{24} + ( -3 + 3 \beta ) q^{25} + ( -2 + 4 \beta ) q^{26} + ( 1 - 4 \beta ) q^{27} + q^{28} + ( 5 - 3 \beta ) q^{29} + ( 1 + 2 \beta ) q^{30} + 6 q^{31} - q^{32} + ( -3 - 3 \beta ) q^{33} + ( -4 + 2 \beta ) q^{34} + ( -1 - \beta ) q^{35} + ( -2 + \beta ) q^{36} + ( 3 + 3 \beta ) q^{37} + ( -4 - 2 \beta ) q^{39} + ( 1 + \beta ) q^{40} + ( 5 - 9 \beta ) q^{41} -\beta q^{42} + ( -1 + 3 \beta ) q^{43} -3 \beta q^{44} + q^{45} + ( 4 - 8 \beta ) q^{46} + ( -6 - 3 \beta ) q^{47} + \beta q^{48} + q^{49} + ( 3 - 3 \beta ) q^{50} + ( -2 + 2 \beta ) q^{51} + ( 2 - 4 \beta ) q^{52} + ( -10 + 3 \beta ) q^{53} + ( -1 + 4 \beta ) q^{54} + ( 3 + 6 \beta ) q^{55} - q^{56} + ( -5 + 3 \beta ) q^{58} + ( 3 - 9 \beta ) q^{59} + ( -1 - 2 \beta ) q^{60} + ( 6 - 9 \beta ) q^{61} -6 q^{62} + ( -2 + \beta ) q^{63} + q^{64} + ( 2 + 6 \beta ) q^{65} + ( 3 + 3 \beta ) q^{66} + ( 2 + 2 \beta ) q^{67} + ( 4 - 2 \beta ) q^{68} + ( 8 + 4 \beta ) q^{69} + ( 1 + \beta ) q^{70} + ( -6 + 9 \beta ) q^{71} + ( 2 - \beta ) q^{72} + ( -3 - 3 \beta ) q^{74} + 3 q^{75} -3 \beta q^{77} + ( 4 + 2 \beta ) q^{78} + ( -11 + 7 \beta ) q^{79} + ( -1 - \beta ) q^{80} + ( 2 - 6 \beta ) q^{81} + ( -5 + 9 \beta ) q^{82} + ( 8 + 2 \beta ) q^{83} + \beta q^{84} -2 q^{85} + ( 1 - 3 \beta ) q^{86} + ( -3 + 2 \beta ) q^{87} + 3 \beta q^{88} + ( -8 + 3 \beta ) q^{89} - q^{90} + ( 2 - 4 \beta ) q^{91} + ( -4 + 8 \beta ) q^{92} + 6 \beta q^{93} + ( 6 + 3 \beta ) q^{94} -\beta q^{96} + ( 12 - 3 \beta ) q^{97} - q^{98} + ( -3 + 3 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 3 q^{5} - q^{6} + 2 q^{7} - 2 q^{8} - 3 q^{9} + O(q^{10}) \) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 3 q^{5} - q^{6} + 2 q^{7} - 2 q^{8} - 3 q^{9} + 3 q^{10} - 3 q^{11} + q^{12} - 2 q^{14} - 4 q^{15} + 2 q^{16} + 6 q^{17} + 3 q^{18} - 3 q^{20} + q^{21} + 3 q^{22} - q^{24} - 3 q^{25} - 2 q^{27} + 2 q^{28} + 7 q^{29} + 4 q^{30} + 12 q^{31} - 2 q^{32} - 9 q^{33} - 6 q^{34} - 3 q^{35} - 3 q^{36} + 9 q^{37} - 10 q^{39} + 3 q^{40} + q^{41} - q^{42} + q^{43} - 3 q^{44} + 2 q^{45} - 15 q^{47} + q^{48} + 2 q^{49} + 3 q^{50} - 2 q^{51} - 17 q^{53} + 2 q^{54} + 12 q^{55} - 2 q^{56} - 7 q^{58} - 3 q^{59} - 4 q^{60} + 3 q^{61} - 12 q^{62} - 3 q^{63} + 2 q^{64} + 10 q^{65} + 9 q^{66} + 6 q^{67} + 6 q^{68} + 20 q^{69} + 3 q^{70} - 3 q^{71} + 3 q^{72} - 9 q^{74} + 6 q^{75} - 3 q^{77} + 10 q^{78} - 15 q^{79} - 3 q^{80} - 2 q^{81} - q^{82} + 18 q^{83} + q^{84} - 4 q^{85} - q^{86} - 4 q^{87} + 3 q^{88} - 13 q^{89} - 2 q^{90} + 6 q^{93} + 15 q^{94} - q^{96} + 21 q^{97} - 2 q^{98} - 3 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 −0.618034 1.00000 −0.381966 0.618034 1.00000 −1.00000 −2.61803 0.381966
1.2 −1.00000 1.61803 1.00000 −2.61803 −1.61803 1.00000 −1.00000 −0.381966 2.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5054.2.a.g 2
19.b odd 2 1 5054.2.a.l yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5054.2.a.g 2 1.a even 1 1 trivial
5054.2.a.l yes 2 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5054))\):

\( T_{3}^{2} - T_{3} - 1 \)
\( T_{5}^{2} + 3 T_{5} + 1 \)
\( T_{13}^{2} - 20 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( -1 - T + T^{2} \)
$5$ \( 1 + 3 T + T^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( -9 + 3 T + T^{2} \)
$13$ \( -20 + T^{2} \)
$17$ \( 4 - 6 T + T^{2} \)
$19$ \( T^{2} \)
$23$ \( -80 + T^{2} \)
$29$ \( 1 - 7 T + T^{2} \)
$31$ \( ( -6 + T )^{2} \)
$37$ \( 9 - 9 T + T^{2} \)
$41$ \( -101 - T + T^{2} \)
$43$ \( -11 - T + T^{2} \)
$47$ \( 45 + 15 T + T^{2} \)
$53$ \( 61 + 17 T + T^{2} \)
$59$ \( -99 + 3 T + T^{2} \)
$61$ \( -99 - 3 T + T^{2} \)
$67$ \( 4 - 6 T + T^{2} \)
$71$ \( -99 + 3 T + T^{2} \)
$73$ \( T^{2} \)
$79$ \( -5 + 15 T + T^{2} \)
$83$ \( 76 - 18 T + T^{2} \)
$89$ \( 31 + 13 T + T^{2} \)
$97$ \( 99 - 21 T + T^{2} \)
show more
show less