Properties

Label 5054.2.a.bi
Level $5054$
Weight $2$
Character orbit 5054.a
Self dual yes
Analytic conductor $40.356$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5054 = 2 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5054.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(40.3563931816\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.19520000000.1
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 16x^{5} + 50x^{4} - 24x^{3} - 72x^{2} - 32x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_{7} + \beta_{5} + 1) q^{3} + q^{4} + ( - \beta_{7} + \beta_{6} + \beta_1 + 1) q^{5} + ( - \beta_{7} + \beta_{5} + 1) q^{6} - q^{7} + q^{8} + ( - \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + ( - \beta_{7} + \beta_{5} + 1) q^{3} + q^{4} + ( - \beta_{7} + \beta_{6} + \beta_1 + 1) q^{5} + ( - \beta_{7} + \beta_{5} + 1) q^{6} - q^{7} + q^{8} + ( - \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + 2) q^{9} + ( - \beta_{7} + \beta_{6} + \beta_1 + 1) q^{10} + ( - \beta_{5} + \beta_{4} + \beta_1) q^{11} + ( - \beta_{7} + \beta_{5} + 1) q^{12} + ( - 2 \beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} + 2 \beta_1 + 1) q^{13} - q^{14} + ( - \beta_{7} + 2 \beta_{6} + \beta_{5} - \beta_{4} + \beta_1 + 2) q^{15} + q^{16} + (2 \beta_{7} - \beta_{6} - \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{17} + ( - \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + 2) q^{18} + ( - \beta_{7} + \beta_{6} + \beta_1 + 1) q^{20} + (\beta_{7} - \beta_{5} - 1) q^{21} + ( - \beta_{5} + \beta_{4} + \beta_1) q^{22} + ( - 2 \beta_{7} - \beta_{6} + 2 \beta_{5} + \beta_{3} + 2 \beta_{2} - \beta_1 + 3) q^{23} + ( - \beta_{7} + \beta_{5} + 1) q^{24} + ( - 2 \beta_{7} + \beta_{5} - \beta_{4} + \beta_1 - 1) q^{25} + ( - 2 \beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} + 2 \beta_1 + 1) q^{26} + ( - \beta_{6} + 2 \beta_{4} + \beta_{3} - 2 \beta_1 + 3) q^{27} - q^{28} + ( - \beta_{6} + 2 \beta_{4} + \beta_{2} + 2) q^{29} + ( - \beta_{7} + 2 \beta_{6} + \beta_{5} - \beta_{4} + \beta_1 + 2) q^{30} + ( - \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} + 2) q^{31} + q^{32} + (2 \beta_{7} - \beta_{6} - \beta_{4} - \beta_{3} - 3 \beta_{2} - 2 \beta_1 - 1) q^{33} + (2 \beta_{7} - \beta_{6} - \beta_{4} - \beta_{3} - \beta_{2} - \beta_1) q^{34} + (\beta_{7} - \beta_{6} - \beta_1 - 1) q^{35} + ( - \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + 2) q^{36} + (2 \beta_{7} - \beta_{6} - 3 \beta_{5} - \beta_{4} - 2 \beta_{3} - 3 \beta_{2} - \beta_1 - 3) q^{37} + ( - 3 \beta_{7} + 3 \beta_{6} + 2 \beta_{5} - 2 \beta_{4} + 3) q^{39} + ( - \beta_{7} + \beta_{6} + \beta_1 + 1) q^{40} + ( - \beta_{7} + 2 \beta_{6} - \beta_{5} + 2 \beta_{4} + 2 \beta_1 + 5) q^{41} + (\beta_{7} - \beta_{5} - 1) q^{42} + ( - 3 \beta_{7} - \beta_{6} + 2 \beta_{5} - 2 \beta_{4} - \beta_{3} - 2 \beta_{2} + \beta_1) q^{43} + ( - \beta_{5} + \beta_{4} + \beta_1) q^{44} + (2 \beta_{6} + 2 \beta_{5} - \beta_{4} + 3 \beta_{2} + \beta_1 + 1) q^{45} + ( - 2 \beta_{7} - \beta_{6} + 2 \beta_{5} + \beta_{3} + 2 \beta_{2} - \beta_1 + 3) q^{46} + ( - \beta_{7} + 3 \beta_{6} + 2 \beta_{5} + \beta_1 + 3) q^{47} + ( - \beta_{7} + \beta_{5} + 1) q^{48} + q^{49} + ( - 2 \beta_{7} + \beta_{5} - \beta_{4} + \beta_1 - 1) q^{50} + (2 \beta_{7} - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} + 2 \beta_1 - 1) q^{51} + ( - 2 \beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} + 2 \beta_1 + 1) q^{52} + (3 \beta_{7} + 3 \beta_{6} - \beta_{3} + \beta_{2} - \beta_1 + 4) q^{53} + ( - \beta_{6} + 2 \beta_{4} + \beta_{3} - 2 \beta_1 + 3) q^{54} + (3 \beta_{7} - 3 \beta_{6} - 2 \beta_{5} - \beta_{3} - \beta_{2}) q^{55} - q^{56} + ( - \beta_{6} + 2 \beta_{4} + \beta_{2} + 2) q^{58} + ( - 2 \beta_{7} + 5 \beta_{6} - 2 \beta_{5} + 2 \beta_{3} + \beta_{2} + 3 \beta_1 + 2) q^{59} + ( - \beta_{7} + 2 \beta_{6} + \beta_{5} - \beta_{4} + \beta_1 + 2) q^{60} + ( - 2 \beta_{6} - \beta_{5} - \beta_{4} - 2 \beta_{3} + 2 \beta_{2}) q^{61} + ( - \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} + 2) q^{62} + (\beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} - 2) q^{63} + q^{64} + ( - 5 \beta_{7} + 2 \beta_{6} + 3 \beta_{5} - \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \cdots + 5) q^{65}+ \cdots + (2 \beta_{7} - 3 \beta_{6} + \beta_{5} + \beta_{4} + 2 \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 6 q^{5} + 4 q^{6} - 8 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 6 q^{5} + 4 q^{6} - 8 q^{7} + 8 q^{8} + 8 q^{9} + 6 q^{10} + 4 q^{11} + 4 q^{12} + 6 q^{13} - 8 q^{14} + 8 q^{15} + 8 q^{16} + 2 q^{17} + 8 q^{18} + 6 q^{20} - 4 q^{21} + 4 q^{22} + 20 q^{23} + 4 q^{24} - 8 q^{25} + 6 q^{26} + 22 q^{27} - 8 q^{28} + 16 q^{29} + 8 q^{30} + 22 q^{31} + 8 q^{32} - 8 q^{33} + 2 q^{34} - 6 q^{35} + 8 q^{36} - 12 q^{37} + 8 q^{39} + 6 q^{40} + 36 q^{41} - 4 q^{42} + 4 q^{44} - 4 q^{45} + 20 q^{46} + 6 q^{47} + 4 q^{48} + 8 q^{49} - 8 q^{50} - 4 q^{51} + 6 q^{52} + 16 q^{53} + 22 q^{54} + 18 q^{55} - 8 q^{56} + 16 q^{58} + 14 q^{59} + 8 q^{60} + 10 q^{61} + 22 q^{62} - 8 q^{63} + 8 q^{64} + 32 q^{65} - 8 q^{66} - 20 q^{67} + 2 q^{68} + 40 q^{69} - 6 q^{70} + 8 q^{72} - 18 q^{73} - 12 q^{74} + 16 q^{75} - 4 q^{77} + 8 q^{78} + 4 q^{79} + 6 q^{80} + 12 q^{81} + 36 q^{82} + 36 q^{83} - 4 q^{84} - 16 q^{85} + 28 q^{87} + 4 q^{88} + 18 q^{89} - 4 q^{90} - 6 q^{91} + 20 q^{92} + 16 q^{93} + 6 q^{94} + 4 q^{96} + 26 q^{97} + 8 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} - 12x^{6} + 16x^{5} + 50x^{4} - 24x^{3} - 72x^{2} - 32x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 6\nu^{2} + 8\nu + 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 4\nu^{2} - 18\nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 10\nu^{2} + 16\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 8\nu^{2} + 18\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 2\nu^{6} - 12\nu^{5} + 17\nu^{4} + 48\nu^{3} - 32\nu^{2} - 64\nu - 16 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{7} + 5\nu^{6} + 22\nu^{5} - 43\nu^{4} - 84\nu^{3} + 86\nu^{2} + 116\nu + 24 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{5} + 8\beta_{4} + 2\beta_{3} + 4\beta_{2} + 10\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{5} + 16\beta_{4} + 12\beta_{3} + 16\beta_{2} + 42\beta _1 + 20 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{7} + 4\beta_{6} - 66\beta_{5} + 70\beta_{4} + 30\beta_{3} + 56\beta_{2} + 92\beta _1 + 102 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4\beta_{7} + 10\beta_{6} - 148\beta_{5} + 180\beta_{4} + 122\beta_{3} + 188\beta_{2} + 326\beta _1 + 188 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.761439
3.02989
−2.15124
−0.236286
2.35877
−0.368905
2.04552
−1.91631
1.00000 −2.13415 1.00000 −1.04552 −2.13415 −1.00000 1.00000 1.55458 −1.04552
1.2 1.00000 −2.04815 1.00000 1.23629 −2.04815 −1.00000 1.00000 1.19490 1.23629
1.3 1.00000 −0.578669 1.00000 1.36891 −0.578669 −1.00000 1.00000 −2.66514 1.36891
1.4 1.00000 −0.0295377 1.00000 −2.02989 −0.0295377 −1.00000 1.00000 −2.99913 −2.02989
1.5 1.00000 0.717767 1.00000 2.91631 0.717767 −1.00000 1.00000 −2.48481 2.91631
1.6 1.00000 2.30521 1.00000 3.15124 2.30521 −1.00000 1.00000 2.31400 3.15124
1.7 1.00000 2.40760 1.00000 1.76144 2.40760 −1.00000 1.00000 2.79656 1.76144
1.8 1.00000 3.35992 1.00000 −1.35877 3.35992 −1.00000 1.00000 8.28904 −1.35877
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5054.2.a.bi yes 8
19.b odd 2 1 5054.2.a.bf 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5054.2.a.bf 8 19.b odd 2 1
5054.2.a.bi yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5054))\):

\( T_{3}^{8} - 4T_{3}^{7} - 8T_{3}^{6} + 38T_{3}^{5} + 15T_{3}^{4} - 98T_{3}^{3} + 2T_{3}^{2} + 34T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} - 6T_{5}^{7} + 2T_{5}^{6} + 42T_{5}^{5} - 50T_{5}^{4} - 82T_{5}^{3} + 122T_{5}^{2} + 46T_{5} - 79 \) Copy content Toggle raw display
\( T_{13}^{8} - 6T_{13}^{7} - 38T_{13}^{6} + 182T_{13}^{5} + 355T_{13}^{4} - 422T_{13}^{3} - 888T_{13}^{2} - 144T_{13} + 181 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 4 T^{7} - 8 T^{6} + 38 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} - 6 T^{7} + 2 T^{6} + 42 T^{5} + \cdots - 79 \) Copy content Toggle raw display
$7$ \( (T + 1)^{8} \) Copy content Toggle raw display
$11$ \( T^{8} - 4 T^{7} - 28 T^{6} + 68 T^{5} + \cdots - 419 \) Copy content Toggle raw display
$13$ \( T^{8} - 6 T^{7} - 38 T^{6} + 182 T^{5} + \cdots + 181 \) Copy content Toggle raw display
$17$ \( T^{8} - 2 T^{7} - 42 T^{6} + 86 T^{5} + \cdots - 779 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - 20 T^{7} + 80 T^{6} + \cdots + 1525 \) Copy content Toggle raw display
$29$ \( T^{8} - 16 T^{7} + 12 T^{6} + \cdots - 7619 \) Copy content Toggle raw display
$31$ \( T^{8} - 22 T^{7} + 158 T^{6} + \cdots - 919 \) Copy content Toggle raw display
$37$ \( T^{8} + 12 T^{7} - 112 T^{6} + \cdots - 410699 \) Copy content Toggle raw display
$41$ \( T^{8} - 36 T^{7} + 452 T^{6} + \cdots + 515341 \) Copy content Toggle raw display
$43$ \( T^{8} - 190 T^{6} - 80 T^{5} + \cdots + 3305 \) Copy content Toggle raw display
$47$ \( T^{8} - 6 T^{7} - 78 T^{6} + 2 T^{5} + \cdots + 121 \) Copy content Toggle raw display
$53$ \( T^{8} - 16 T^{7} - 48 T^{6} + \cdots - 24979 \) Copy content Toggle raw display
$59$ \( T^{8} - 14 T^{7} - 218 T^{6} + \cdots - 3744859 \) Copy content Toggle raw display
$61$ \( T^{8} - 10 T^{7} - 170 T^{6} + \cdots - 411095 \) Copy content Toggle raw display
$67$ \( T^{8} + 20 T^{7} - 130 T^{6} + \cdots - 4692995 \) Copy content Toggle raw display
$71$ \( T^{8} - 240 T^{6} + 320 T^{5} + \cdots + 14480 \) Copy content Toggle raw display
$73$ \( T^{8} + 18 T^{7} - 2 T^{6} + \cdots - 58519 \) Copy content Toggle raw display
$79$ \( T^{8} - 4 T^{7} - 338 T^{6} + \cdots + 1204961 \) Copy content Toggle raw display
$83$ \( T^{8} - 36 T^{7} + 172 T^{6} + \cdots + 24520336 \) Copy content Toggle raw display
$89$ \( T^{8} - 18 T^{7} - 102 T^{6} + \cdots - 122399 \) Copy content Toggle raw display
$97$ \( T^{8} - 26 T^{7} - 58 T^{6} + \cdots - 7416859 \) Copy content Toggle raw display
show more
show less