Properties

Label 5040.2.t.t
Level 5040
Weight 2
Character orbit 5040.t
Analytic conductor 40.245
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5040.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta_{2} - \beta_{3} ) q^{5} + \beta_{2} q^{7} +O(q^{10})\) \( q + ( -1 - \beta_{2} - \beta_{3} ) q^{5} + \beta_{2} q^{7} + ( 2 \beta_{1} - 2 \beta_{3} ) q^{11} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{13} -2 \beta_{2} q^{17} + ( 4 + \beta_{1} - \beta_{3} ) q^{19} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{23} + ( -2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{25} + ( 2 - 2 \beta_{1} + 2 \beta_{3} ) q^{29} + ( -4 + 2 \beta_{1} - 2 \beta_{3} ) q^{31} + ( 1 + \beta_{1} - \beta_{2} ) q^{35} + 2 \beta_{2} q^{37} + ( 6 + 2 \beta_{1} - 2 \beta_{3} ) q^{41} + ( 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{43} + ( -2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{47} - q^{49} + ( 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{3} ) q^{53} + ( 6 - 4 \beta_{1} - 6 \beta_{2} ) q^{55} + ( 4 + \beta_{1} - \beta_{3} ) q^{59} + ( 6 + \beta_{1} - \beta_{3} ) q^{61} + ( 1 - 2 \beta_{1} + 5 \beta_{2} - 2 \beta_{3} ) q^{65} + 8 \beta_{2} q^{67} + ( -6 - 2 \beta_{1} + 2 \beta_{3} ) q^{71} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{73} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{77} + ( 2 - 2 \beta_{1} + 2 \beta_{3} ) q^{79} + ( -\beta_{1} - \beta_{3} ) q^{83} + ( -2 - 2 \beta_{1} + 2 \beta_{2} ) q^{85} -10 q^{89} + ( 2 - \beta_{1} + \beta_{3} ) q^{91} + ( -1 - 2 \beta_{1} - 7 \beta_{2} - 4 \beta_{3} ) q^{95} + ( -4 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{5} + O(q^{10}) \) \( 4q - 4q^{5} + 16q^{19} + 8q^{29} - 16q^{31} + 4q^{35} + 24q^{41} - 4q^{49} + 24q^{55} + 16q^{59} + 24q^{61} + 4q^{65} - 24q^{71} + 8q^{79} - 8q^{85} - 40q^{89} + 8q^{91} - 4q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/3\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(3 \beta_{2}\)
\(\nu^{3}\)\(=\)\(3 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
−1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
1.22474 1.22474i
0 0 0 −2.22474 0.224745i 0 1.00000i 0 0 0
1009.2 0 0 0 −2.22474 + 0.224745i 0 1.00000i 0 0 0
1009.3 0 0 0 0.224745 2.22474i 0 1.00000i 0 0 0
1009.4 0 0 0 0.224745 + 2.22474i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.t.t 4
3.b odd 2 1 560.2.g.e 4
4.b odd 2 1 630.2.g.g 4
5.b even 2 1 inner 5040.2.t.t 4
12.b even 2 1 70.2.c.a 4
15.d odd 2 1 560.2.g.e 4
15.e even 4 1 2800.2.a.bl 2
15.e even 4 1 2800.2.a.bm 2
20.d odd 2 1 630.2.g.g 4
20.e even 4 1 3150.2.a.bs 2
20.e even 4 1 3150.2.a.bt 2
24.f even 2 1 2240.2.g.j 4
24.h odd 2 1 2240.2.g.i 4
60.h even 2 1 70.2.c.a 4
60.l odd 4 1 350.2.a.g 2
60.l odd 4 1 350.2.a.h 2
84.h odd 2 1 490.2.c.e 4
84.j odd 6 2 490.2.i.f 8
84.n even 6 2 490.2.i.c 8
120.i odd 2 1 2240.2.g.i 4
120.m even 2 1 2240.2.g.j 4
420.o odd 2 1 490.2.c.e 4
420.w even 4 1 2450.2.a.bl 2
420.w even 4 1 2450.2.a.bq 2
420.ba even 6 2 490.2.i.c 8
420.be odd 6 2 490.2.i.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.c.a 4 12.b even 2 1
70.2.c.a 4 60.h even 2 1
350.2.a.g 2 60.l odd 4 1
350.2.a.h 2 60.l odd 4 1
490.2.c.e 4 84.h odd 2 1
490.2.c.e 4 420.o odd 2 1
490.2.i.c 8 84.n even 6 2
490.2.i.c 8 420.ba even 6 2
490.2.i.f 8 84.j odd 6 2
490.2.i.f 8 420.be odd 6 2
560.2.g.e 4 3.b odd 2 1
560.2.g.e 4 15.d odd 2 1
630.2.g.g 4 4.b odd 2 1
630.2.g.g 4 20.d odd 2 1
2240.2.g.i 4 24.h odd 2 1
2240.2.g.i 4 120.i odd 2 1
2240.2.g.j 4 24.f even 2 1
2240.2.g.j 4 120.m even 2 1
2450.2.a.bl 2 420.w even 4 1
2450.2.a.bq 2 420.w even 4 1
2800.2.a.bl 2 15.e even 4 1
2800.2.a.bm 2 15.e even 4 1
3150.2.a.bs 2 20.e even 4 1
3150.2.a.bt 2 20.e even 4 1
5040.2.t.t 4 1.a even 1 1 trivial
5040.2.t.t 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11}^{2} - 24 \)
\( T_{13}^{4} + 20 T_{13}^{2} + 4 \)
\( T_{17}^{2} + 4 \)
\( T_{19}^{2} - 8 T_{19} + 10 \)
\( T_{29}^{2} - 4 T_{29} - 20 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 4 T + 8 T^{2} + 20 T^{3} + 25 T^{4} \)
$7$ \( ( 1 + T^{2} )^{2} \)
$11$ \( ( 1 - 2 T^{2} + 121 T^{4} )^{2} \)
$13$ \( 1 - 32 T^{2} + 498 T^{4} - 5408 T^{6} + 28561 T^{8} \)
$17$ \( ( 1 - 8 T + 17 T^{2} )^{2}( 1 + 8 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 - 8 T + 48 T^{2} - 152 T^{3} + 361 T^{4} )^{2} \)
$23$ \( 1 - 36 T^{2} + 998 T^{4} - 19044 T^{6} + 279841 T^{8} \)
$29$ \( ( 1 - 4 T + 38 T^{2} - 116 T^{3} + 841 T^{4} )^{2} \)
$31$ \( ( 1 + 8 T + 54 T^{2} + 248 T^{3} + 961 T^{4} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )^{2}( 1 + 12 T + 37 T^{2} )^{2} \)
$41$ \( ( 1 - 12 T + 94 T^{2} - 492 T^{3} + 1681 T^{4} )^{2} \)
$43$ \( 1 - 92 T^{2} + 4278 T^{4} - 170108 T^{6} + 3418801 T^{8} \)
$47$ \( 1 - 108 T^{2} + 5798 T^{4} - 238572 T^{6} + 4879681 T^{8} \)
$53$ \( 1 - 92 T^{2} + 4278 T^{4} - 258428 T^{6} + 7890481 T^{8} \)
$59$ \( ( 1 - 8 T + 128 T^{2} - 472 T^{3} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 12 T + 152 T^{2} - 732 T^{3} + 3721 T^{4} )^{2} \)
$67$ \( ( 1 - 70 T^{2} + 4489 T^{4} )^{2} \)
$71$ \( ( 1 + 12 T + 154 T^{2} + 852 T^{3} + 5041 T^{4} )^{2} \)
$73$ \( 1 - 236 T^{2} + 24198 T^{4} - 1257644 T^{6} + 28398241 T^{8} \)
$79$ \( ( 1 - 4 T + 138 T^{2} - 316 T^{3} + 6241 T^{4} )^{2} \)
$83$ \( ( 1 - 160 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 + 10 T + 89 T^{2} )^{4} \)
$97$ \( 1 - 124 T^{2} + 8838 T^{4} - 1166716 T^{6} + 88529281 T^{8} \)
show more
show less