Properties

Label 5040.2.t.e
Level 5040
Weight 2
Character orbit 5040.t
Analytic conductor 40.245
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5040.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + 2 i ) q^{5} -i q^{7} +O(q^{10})\) \( q + ( -1 + 2 i ) q^{5} -i q^{7} -6 q^{11} -2 i q^{13} + 4 i q^{17} -6 q^{19} + ( -3 - 4 i ) q^{25} -2 q^{29} + 10 q^{31} + ( 2 + i ) q^{35} + 4 i q^{37} -2 q^{41} + 4 i q^{43} - q^{49} -6 i q^{53} + ( 6 - 12 i ) q^{55} + 8 q^{59} -2 q^{61} + ( 4 + 2 i ) q^{65} -16 i q^{67} + 10 q^{71} -6 i q^{73} + 6 i q^{77} + 4 q^{79} + 8 i q^{83} + ( -8 - 4 i ) q^{85} + 6 q^{89} -2 q^{91} + ( 6 - 12 i ) q^{95} + 2 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{5} + O(q^{10}) \) \( 2q - 2q^{5} - 12q^{11} - 12q^{19} - 6q^{25} - 4q^{29} + 20q^{31} + 4q^{35} - 4q^{41} - 2q^{49} + 12q^{55} + 16q^{59} - 4q^{61} + 8q^{65} + 20q^{71} + 8q^{79} - 16q^{85} + 12q^{89} - 4q^{91} + 12q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
1.00000i
1.00000i
0 0 0 −1.00000 2.00000i 0 1.00000i 0 0 0
1009.2 0 0 0 −1.00000 + 2.00000i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.t.e 2
3.b odd 2 1 1680.2.t.f 2
4.b odd 2 1 315.2.d.c 2
5.b even 2 1 inner 5040.2.t.e 2
12.b even 2 1 105.2.d.a 2
15.d odd 2 1 1680.2.t.f 2
15.e even 4 1 8400.2.a.bj 1
15.e even 4 1 8400.2.a.ch 1
20.d odd 2 1 315.2.d.c 2
20.e even 4 1 1575.2.a.e 1
20.e even 4 1 1575.2.a.i 1
28.d even 2 1 2205.2.d.f 2
60.h even 2 1 105.2.d.a 2
60.l odd 4 1 525.2.a.b 1
60.l odd 4 1 525.2.a.c 1
84.h odd 2 1 735.2.d.a 2
84.j odd 6 2 735.2.q.b 4
84.n even 6 2 735.2.q.a 4
140.c even 2 1 2205.2.d.f 2
420.o odd 2 1 735.2.d.a 2
420.w even 4 1 3675.2.a.d 1
420.w even 4 1 3675.2.a.l 1
420.ba even 6 2 735.2.q.a 4
420.be odd 6 2 735.2.q.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.a 2 12.b even 2 1
105.2.d.a 2 60.h even 2 1
315.2.d.c 2 4.b odd 2 1
315.2.d.c 2 20.d odd 2 1
525.2.a.b 1 60.l odd 4 1
525.2.a.c 1 60.l odd 4 1
735.2.d.a 2 84.h odd 2 1
735.2.d.a 2 420.o odd 2 1
735.2.q.a 4 84.n even 6 2
735.2.q.a 4 420.ba even 6 2
735.2.q.b 4 84.j odd 6 2
735.2.q.b 4 420.be odd 6 2
1575.2.a.e 1 20.e even 4 1
1575.2.a.i 1 20.e even 4 1
1680.2.t.f 2 3.b odd 2 1
1680.2.t.f 2 15.d odd 2 1
2205.2.d.f 2 28.d even 2 1
2205.2.d.f 2 140.c even 2 1
3675.2.a.d 1 420.w even 4 1
3675.2.a.l 1 420.w even 4 1
5040.2.t.e 2 1.a even 1 1 trivial
5040.2.t.e 2 5.b even 2 1 inner
8400.2.a.bj 1 15.e even 4 1
8400.2.a.ch 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11} + 6 \)
\( T_{13}^{2} + 4 \)
\( T_{17}^{2} + 16 \)
\( T_{19} + 6 \)
\( T_{29} + 2 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( ( 1 + 6 T + 11 T^{2} )^{2} \)
$13$ \( 1 - 22 T^{2} + 169 T^{4} \)
$17$ \( 1 - 18 T^{2} + 289 T^{4} \)
$19$ \( ( 1 + 6 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 23 T^{2} )^{2} \)
$29$ \( ( 1 + 2 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 10 T + 31 T^{2} )^{2} \)
$37$ \( 1 - 58 T^{2} + 1369 T^{4} \)
$41$ \( ( 1 + 2 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 70 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 47 T^{2} )^{2} \)
$53$ \( 1 - 70 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 - 8 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 + 2 T + 61 T^{2} )^{2} \)
$67$ \( 1 + 122 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 - 10 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 16 T + 73 T^{2} )( 1 + 16 T + 73 T^{2} ) \)
$79$ \( ( 1 - 4 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 102 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 190 T^{2} + 9409 T^{4} \)
show more
show less