Properties

Label 5040.2.k.d
Level 5040
Weight 2
Character orbit 5040.k
Analytic conductor 40.245
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5040.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{5} + ( \beta_{1} - 2 \beta_{2} ) q^{7} +O(q^{10})\) \( q -\beta_{3} q^{5} + ( \beta_{1} - 2 \beta_{2} ) q^{7} + \beta_{2} q^{11} + ( -2 \beta_{1} + \beta_{2} ) q^{13} -2 \beta_{3} q^{17} + 6 q^{23} -5 q^{25} + 2 \beta_{2} q^{29} + ( -3 \beta_{1} - \beta_{2} ) q^{35} -3 \beta_{2} q^{37} + ( -6 \beta_{1} + 3 \beta_{2} ) q^{41} -6 \beta_{2} q^{43} + 2 \beta_{3} q^{47} + ( -2 - 3 \beta_{3} ) q^{49} -6 q^{53} + ( 2 \beta_{1} - \beta_{2} ) q^{55} + ( 6 \beta_{1} - 3 \beta_{2} ) q^{59} -6 \beta_{3} q^{61} + 5 \beta_{2} q^{65} + 4 \beta_{2} q^{71} + ( 4 \beta_{1} - 2 \beta_{2} ) q^{73} + ( 3 + \beta_{3} ) q^{77} + 4 q^{79} -4 \beta_{3} q^{83} -10 q^{85} + ( 6 \beta_{1} - 3 \beta_{2} ) q^{89} + ( -5 + 3 \beta_{3} ) q^{91} + ( -8 \beta_{1} + 4 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q + 24q^{23} - 20q^{25} - 8q^{49} - 24q^{53} + 12q^{77} + 16q^{79} - 40q^{85} - 20q^{91} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 4 x^{2} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} - \nu \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{2} - 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 2\)
\(\nu^{3}\)\(=\)\(3 \beta_{2} + \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
−1.58114 0.707107i
1.58114 + 0.707107i
−1.58114 + 0.707107i
1.58114 0.707107i
0 0 0 2.23607i 0 −1.58114 + 2.12132i 0 0 0
1889.2 0 0 0 2.23607i 0 1.58114 2.12132i 0 0 0
1889.3 0 0 0 2.23607i 0 −1.58114 2.12132i 0 0 0
1889.4 0 0 0 2.23607i 0 1.58114 + 2.12132i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
15.d odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.k.d 4
3.b odd 2 1 5040.2.k.a 4
4.b odd 2 1 630.2.d.a 4
5.b even 2 1 5040.2.k.a 4
7.b odd 2 1 inner 5040.2.k.d 4
12.b even 2 1 630.2.d.d yes 4
15.d odd 2 1 inner 5040.2.k.d 4
20.d odd 2 1 630.2.d.d yes 4
20.e even 4 2 3150.2.b.c 8
21.c even 2 1 5040.2.k.a 4
28.d even 2 1 630.2.d.a 4
35.c odd 2 1 5040.2.k.a 4
60.h even 2 1 630.2.d.a 4
60.l odd 4 2 3150.2.b.c 8
84.h odd 2 1 630.2.d.d yes 4
105.g even 2 1 inner 5040.2.k.d 4
140.c even 2 1 630.2.d.d yes 4
140.j odd 4 2 3150.2.b.c 8
420.o odd 2 1 630.2.d.a 4
420.w even 4 2 3150.2.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.d.a 4 4.b odd 2 1
630.2.d.a 4 28.d even 2 1
630.2.d.a 4 60.h even 2 1
630.2.d.a 4 420.o odd 2 1
630.2.d.d yes 4 12.b even 2 1
630.2.d.d yes 4 20.d odd 2 1
630.2.d.d yes 4 84.h odd 2 1
630.2.d.d yes 4 140.c even 2 1
3150.2.b.c 8 20.e even 4 2
3150.2.b.c 8 60.l odd 4 2
3150.2.b.c 8 140.j odd 4 2
3150.2.b.c 8 420.w even 4 2
5040.2.k.a 4 3.b odd 2 1
5040.2.k.a 4 5.b even 2 1
5040.2.k.a 4 21.c even 2 1
5040.2.k.a 4 35.c odd 2 1
5040.2.k.d 4 1.a even 1 1 trivial
5040.2.k.d 4 7.b odd 2 1 inner
5040.2.k.d 4 15.d odd 2 1 inner
5040.2.k.d 4 105.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11}^{2} + 2 \)
\( T_{13}^{2} - 10 \)
\( T_{23} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 + 5 T^{2} )^{2} \)
$7$ \( 1 + 4 T^{2} + 49 T^{4} \)
$11$ \( ( 1 - 20 T^{2} + 121 T^{4} )^{2} \)
$13$ \( ( 1 + 16 T^{2} + 169 T^{4} )^{2} \)
$17$ \( ( 1 - 14 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 - 19 T^{2} )^{4} \)
$23$ \( ( 1 - 6 T + 23 T^{2} )^{4} \)
$29$ \( ( 1 - 50 T^{2} + 841 T^{4} )^{2} \)
$31$ \( ( 1 - 31 T^{2} )^{4} \)
$37$ \( ( 1 - 56 T^{2} + 1369 T^{4} )^{2} \)
$41$ \( ( 1 - 8 T^{2} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 - 10 T + 43 T^{2} )^{2}( 1 + 10 T + 43 T^{2} )^{2} \)
$47$ \( ( 1 - 74 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 + 6 T + 53 T^{2} )^{4} \)
$59$ \( ( 1 + 28 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 8 T + 61 T^{2} )^{2}( 1 + 8 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 67 T^{2} )^{4} \)
$71$ \( ( 1 - 110 T^{2} + 5041 T^{4} )^{2} \)
$73$ \( ( 1 + 106 T^{2} + 5329 T^{4} )^{2} \)
$79$ \( ( 1 - 4 T + 79 T^{2} )^{4} \)
$83$ \( ( 1 - 86 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 + 88 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 + 34 T^{2} + 9409 T^{4} )^{2} \)
show more
show less