Properties

Label 5040.2.f.i
Level 5040
Weight 2
Character orbit 5040.f
Analytic conductor 40.245
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5040.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.7442857984.4
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} + ( 1 - \beta_{5} ) q^{7} +O(q^{10})\) \( q + q^{5} + ( 1 - \beta_{5} ) q^{7} + ( -\beta_{5} - \beta_{6} ) q^{11} + \beta_{1} q^{13} -\beta_{2} q^{17} + ( -\beta_{1} + \beta_{4} ) q^{19} + ( \beta_{1} - \beta_{5} - \beta_{6} ) q^{23} + q^{25} + ( -\beta_{1} + \beta_{5} + \beta_{6} ) q^{29} + ( -\beta_{1} - \beta_{5} - \beta_{6} + \beta_{7} ) q^{31} + ( 1 - \beta_{5} ) q^{35} + ( -2 - \beta_{2} + \beta_{5} - \beta_{6} ) q^{37} + ( \beta_{5} - \beta_{6} ) q^{41} + ( 2 - \beta_{2} ) q^{43} + ( -6 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{5} - \beta_{6} ) q^{47} + ( 1 + \beta_{3} + \beta_{4} - \beta_{5} ) q^{49} + ( -\beta_{1} - \beta_{5} - \beta_{6} ) q^{53} + ( -\beta_{5} - \beta_{6} ) q^{55} + ( -\beta_{1} + 2 \beta_{3} ) q^{59} + ( -\beta_{1} - \beta_{4} + \beta_{7} ) q^{61} + \beta_{1} q^{65} + ( -2 + \beta_{2} - 2 \beta_{5} + 2 \beta_{6} ) q^{67} + ( -\beta_{1} + \beta_{4} ) q^{71} + ( -2 \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{73} + ( -6 + \beta_{3} + \beta_{4} - \beta_{5} ) q^{77} + ( -2 - \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{5} - \beta_{6} ) q^{79} + ( 2 \beta_{5} - 2 \beta_{6} ) q^{83} -\beta_{2} q^{85} + ( 2 \beta_{2} + \beta_{5} - \beta_{6} ) q^{89} + ( -\beta_{1} + \beta_{3} - \beta_{4} - \beta_{6} - \beta_{7} ) q^{91} + ( -\beta_{1} + \beta_{4} ) q^{95} + ( -3 \beta_{1} + \beta_{5} + \beta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{5} + 4q^{7} + O(q^{10}) \) \( 8q + 8q^{5} + 4q^{7} + 8q^{25} + 4q^{35} - 8q^{37} + 8q^{41} + 16q^{43} - 40q^{47} + 4q^{49} - 32q^{67} - 52q^{77} - 8q^{79} + 16q^{83} + 8q^{89} + 4q^{91} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 26 x^{6} + 205 x^{4} + 540 x^{2} + 324\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{7} + 20 \nu^{5} + 73 \nu^{3} - 198 \nu \)\()/72\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{6} - 16 \nu^{4} - 21 \nu^{2} + 126 \)\()/24\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{7} - 6 \nu^{6} + 20 \nu^{5} - 132 \nu^{4} + 73 \nu^{3} - 594 \nu^{2} - 198 \nu + 108 \)\()/144\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{7} + 26 \nu^{5} + 187 \nu^{3} + 306 \nu \)\()/36\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{7} - 6 \nu^{6} + 20 \nu^{5} - 132 \nu^{4} + 73 \nu^{3} - 738 \nu^{2} - 54 \nu - 756 \)\()/144\)
\(\beta_{6}\)\(=\)\((\)\( \nu^{7} + 6 \nu^{6} + 20 \nu^{5} + 132 \nu^{4} + 73 \nu^{3} + 738 \nu^{2} - 54 \nu + 756 \)\()/144\)
\(\beta_{7}\)\(=\)\((\)\( 5 \nu^{7} + 112 \nu^{5} + 665 \nu^{3} + 954 \nu \)\()/72\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{6} + \beta_{5} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{6} - \beta_{5} + 2 \beta_{3} - \beta_{1} - 12\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{7} - 13 \beta_{6} - 13 \beta_{5} - 2 \beta_{4} + 7 \beta_{1}\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-13 \beta_{6} + 13 \beta_{5} - 34 \beta_{3} + 8 \beta_{2} + 17 \beta_{1} + 120\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-38 \beta_{7} + 163 \beta_{6} + 163 \beta_{5} + 50 \beta_{4} - 73 \beta_{1}\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(187 \beta_{6} - 187 \beta_{5} + 502 \beta_{3} - 176 \beta_{2} - 251 \beta_{1} - 1416\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(614 \beta_{7} - 2113 \beta_{6} - 2113 \beta_{5} - 854 \beta_{4} + 895 \beta_{1}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
1.91681i
1.91681i
3.73923i
3.73923i
2.73923i
2.73923i
0.916813i
0.916813i
0 0 0 1.00000 0 −2.27220 1.35539i 0 0 0
881.2 0 0 0 1.00000 0 −2.27220 + 1.35539i 0 0 0
881.3 0 0 0 1.00000 0 −0.0951965 2.64404i 0 0 0
881.4 0 0 0 1.00000 0 −0.0951965 + 2.64404i 0 0 0
881.5 0 0 0 1.00000 0 1.80230 1.93693i 0 0 0
881.6 0 0 0 1.00000 0 1.80230 + 1.93693i 0 0 0
881.7 0 0 0 1.00000 0 2.56510 0.648285i 0 0 0
881.8 0 0 0 1.00000 0 2.56510 + 0.648285i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 881.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.f.i 8
3.b odd 2 1 5040.2.f.f 8
4.b odd 2 1 630.2.b.b yes 8
7.b odd 2 1 5040.2.f.f 8
12.b even 2 1 630.2.b.a 8
20.d odd 2 1 3150.2.b.f 8
20.e even 4 1 3150.2.d.a 8
20.e even 4 1 3150.2.d.f 8
21.c even 2 1 inner 5040.2.f.i 8
28.d even 2 1 630.2.b.a 8
60.h even 2 1 3150.2.b.e 8
60.l odd 4 1 3150.2.d.c 8
60.l odd 4 1 3150.2.d.d 8
84.h odd 2 1 630.2.b.b yes 8
140.c even 2 1 3150.2.b.e 8
140.j odd 4 1 3150.2.d.c 8
140.j odd 4 1 3150.2.d.d 8
420.o odd 2 1 3150.2.b.f 8
420.w even 4 1 3150.2.d.a 8
420.w even 4 1 3150.2.d.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.b.a 8 12.b even 2 1
630.2.b.a 8 28.d even 2 1
630.2.b.b yes 8 4.b odd 2 1
630.2.b.b yes 8 84.h odd 2 1
3150.2.b.e 8 60.h even 2 1
3150.2.b.e 8 140.c even 2 1
3150.2.b.f 8 20.d odd 2 1
3150.2.b.f 8 420.o odd 2 1
3150.2.d.a 8 20.e even 4 1
3150.2.d.a 8 420.w even 4 1
3150.2.d.c 8 60.l odd 4 1
3150.2.d.c 8 140.j odd 4 1
3150.2.d.d 8 60.l odd 4 1
3150.2.d.d 8 140.j odd 4 1
3150.2.d.f 8 20.e even 4 1
3150.2.d.f 8 420.w even 4 1
5040.2.f.f 8 3.b odd 2 1
5040.2.f.f 8 7.b odd 2 1
5040.2.f.i 8 1.a even 1 1 trivial
5040.2.f.i 8 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11}^{8} + 52 T_{11}^{6} + 820 T_{11}^{4} + 4320 T_{11}^{2} + 5184 \)
\( T_{17}^{4} - 50 T_{17}^{2} - 120 T_{17} - 72 \)
\( T_{41}^{4} - 4 T_{41}^{3} - 22 T_{41}^{2} + 24 T_{41} + 72 \)
\( T_{47}^{4} + 20 T_{47}^{3} - 22 T_{47}^{2} - 2424 T_{47} - 12024 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 - T )^{8} \)
$7$ \( 1 - 4 T + 6 T^{2} - 4 T^{3} + 2 T^{4} - 28 T^{5} + 294 T^{6} - 1372 T^{7} + 2401 T^{8} \)
$11$ \( 1 - 36 T^{2} + 776 T^{4} - 11916 T^{6} + 146094 T^{8} - 1441836 T^{10} + 11361416 T^{12} - 63776196 T^{14} + 214358881 T^{16} \)
$13$ \( 1 - 44 T^{2} + 872 T^{4} - 9828 T^{6} + 102190 T^{8} - 1660932 T^{10} + 24905192 T^{12} - 212379596 T^{14} + 815730721 T^{16} \)
$17$ \( ( 1 + 18 T^{2} - 120 T^{3} - 38 T^{4} - 2040 T^{5} + 5202 T^{6} + 83521 T^{8} )^{2} \)
$19$ \( 1 - 44 T^{2} + 1256 T^{4} - 31140 T^{6} + 702382 T^{8} - 11241540 T^{10} + 163683176 T^{12} - 2070018764 T^{14} + 16983563041 T^{16} \)
$23$ \( 1 - 80 T^{2} + 3740 T^{4} - 123312 T^{6} + 3185414 T^{8} - 65232048 T^{10} + 1046605340 T^{12} - 11842871120 T^{14} + 78310985281 T^{16} \)
$29$ \( 1 - 128 T^{2} + 8732 T^{4} - 399744 T^{6} + 13409894 T^{8} - 336184704 T^{10} + 6175977692 T^{12} - 76137385088 T^{14} + 500246412961 T^{16} \)
$31$ \( 1 - 32 T^{2} + 572 T^{4} - 21984 T^{6} + 1650310 T^{8} - 21126624 T^{10} + 528254012 T^{12} - 28400117792 T^{14} + 852891037441 T^{16} \)
$37$ \( ( 1 + 4 T + 84 T^{2} + 532 T^{3} + 3602 T^{4} + 19684 T^{5} + 114996 T^{6} + 202612 T^{7} + 1874161 T^{8} )^{2} \)
$41$ \( ( 1 - 4 T + 142 T^{2} - 468 T^{3} + 8354 T^{4} - 19188 T^{5} + 238702 T^{6} - 275684 T^{7} + 2825761 T^{8} )^{2} \)
$43$ \( ( 1 - 8 T + 146 T^{2} - 984 T^{3} + 8842 T^{4} - 42312 T^{5} + 269954 T^{6} - 636056 T^{7} + 3418801 T^{8} )^{2} \)
$47$ \( ( 1 + 20 T + 166 T^{2} + 396 T^{3} - 838 T^{4} + 18612 T^{5} + 366694 T^{6} + 2076460 T^{7} + 4879681 T^{8} )^{2} \)
$53$ \( 1 - 304 T^{2} + 43772 T^{4} - 3946320 T^{6} + 247218022 T^{8} - 11085212880 T^{10} + 345382134332 T^{12} - 6737965783216 T^{14} + 62259690411361 T^{16} \)
$59$ \( ( 1 + 42 T^{2} + 312 T^{3} + 3106 T^{4} + 18408 T^{5} + 146202 T^{6} + 12117361 T^{8} )^{2} \)
$61$ \( 1 - 236 T^{2} + 31208 T^{4} - 2804772 T^{6} + 194357422 T^{8} - 10436556612 T^{10} + 432101005928 T^{12} - 12158808349196 T^{14} + 191707312997281 T^{16} \)
$67$ \( ( 1 + 16 T + 218 T^{2} + 1728 T^{3} + 15338 T^{4} + 115776 T^{5} + 978602 T^{6} + 4812208 T^{7} + 20151121 T^{8} )^{2} \)
$71$ \( 1 - 460 T^{2} + 98600 T^{4} - 12828132 T^{6} + 1106047246 T^{8} - 64666613412 T^{10} + 2505591746600 T^{12} - 58926130603660 T^{14} + 645753531245761 T^{16} \)
$73$ \( 1 - 232 T^{2} + 30332 T^{4} - 3074136 T^{6} + 255245510 T^{8} - 16382070744 T^{10} + 861375446012 T^{12} - 35109540499048 T^{14} + 806460091894081 T^{16} \)
$79$ \( ( 1 + 4 T + 48 T^{2} + 532 T^{3} + 9470 T^{4} + 42028 T^{5} + 299568 T^{6} + 1972156 T^{7} + 38950081 T^{8} )^{2} \)
$83$ \( ( 1 - 8 T + 244 T^{2} - 1800 T^{3} + 27878 T^{4} - 149400 T^{5} + 1680916 T^{6} - 4574296 T^{7} + 47458321 T^{8} )^{2} \)
$89$ \( ( 1 - 4 T + 118 T^{2} + 1308 T^{3} - 670 T^{4} + 116412 T^{5} + 934678 T^{6} - 2819876 T^{7} + 62742241 T^{8} )^{2} \)
$97$ \( 1 - 208 T^{2} + 38300 T^{4} - 4059696 T^{6} + 468613574 T^{8} - 38197679664 T^{10} + 3390671462300 T^{12} - 173258177025232 T^{14} + 7837433594376961 T^{16} \)
show more
show less