Properties

 Label 5040.2.a.l Level $5040$ Weight $2$ Character orbit 5040.a Self dual yes Analytic conductor $40.245$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Learn more about

Newspace parameters

 Level: $$N$$ $$=$$ $$5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5040.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$40.2446026187$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 840) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{5} + q^{7} + O(q^{10})$$ $$q - q^{5} + q^{7} - 4q^{11} - 2q^{13} - 2q^{17} + 4q^{19} + q^{25} + 10q^{29} - q^{35} + 6q^{37} + 6q^{41} + 4q^{43} - 8q^{47} + q^{49} - 6q^{53} + 4q^{55} - 4q^{59} - 10q^{61} + 2q^{65} - 4q^{67} - 16q^{71} - 14q^{73} - 4q^{77} - 8q^{79} - 4q^{83} + 2q^{85} - 10q^{89} - 2q^{91} - 4q^{95} + 10q^{97} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.a.l 1
3.b odd 2 1 1680.2.a.t 1
4.b odd 2 1 2520.2.a.f 1
12.b even 2 1 840.2.a.d 1
15.d odd 2 1 8400.2.a.l 1
24.f even 2 1 6720.2.a.bl 1
24.h odd 2 1 6720.2.a.m 1
60.h even 2 1 4200.2.a.bb 1
60.l odd 4 2 4200.2.t.c 2
84.h odd 2 1 5880.2.a.t 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.a.d 1 12.b even 2 1
1680.2.a.t 1 3.b odd 2 1
2520.2.a.f 1 4.b odd 2 1
4200.2.a.bb 1 60.h even 2 1
4200.2.t.c 2 60.l odd 4 2
5040.2.a.l 1 1.a even 1 1 trivial
5880.2.a.t 1 84.h odd 2 1
6720.2.a.m 1 24.h odd 2 1
6720.2.a.bl 1 24.f even 2 1
8400.2.a.l 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5040))$$:

 $$T_{11} + 4$$ $$T_{13} + 2$$ $$T_{17} + 2$$ $$T_{19} - 4$$ $$T_{29} - 10$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$1 + T$$
$7$ $$-1 + T$$
$11$ $$4 + T$$
$13$ $$2 + T$$
$17$ $$2 + T$$
$19$ $$-4 + T$$
$23$ $$T$$
$29$ $$-10 + T$$
$31$ $$T$$
$37$ $$-6 + T$$
$41$ $$-6 + T$$
$43$ $$-4 + T$$
$47$ $$8 + T$$
$53$ $$6 + T$$
$59$ $$4 + T$$
$61$ $$10 + T$$
$67$ $$4 + T$$
$71$ $$16 + T$$
$73$ $$14 + T$$
$79$ $$8 + T$$
$83$ $$4 + T$$
$89$ $$10 + T$$
$97$ $$-10 + T$$
show more
show less