Properties

Label 5040.2.a.bm
Level $5040$
Weight $2$
Character orbit 5040.a
Self dual yes
Analytic conductor $40.245$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(40.2446026187\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{5} + q^{7} + O(q^{10}) \) \( q + q^{5} + q^{7} + 4q^{11} - 6q^{13} - 2q^{17} + q^{25} - 6q^{29} - 8q^{31} + q^{35} - 10q^{37} - 2q^{41} - 4q^{43} + 8q^{47} + q^{49} + 2q^{53} + 4q^{55} - 8q^{59} - 14q^{61} - 6q^{65} + 12q^{67} - 16q^{71} + 2q^{73} + 4q^{77} + 8q^{79} + 8q^{83} - 2q^{85} - 10q^{89} - 6q^{91} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 1.00000 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.a.bm 1
3.b odd 2 1 560.2.a.d 1
4.b odd 2 1 630.2.a.d 1
12.b even 2 1 70.2.a.a 1
15.d odd 2 1 2800.2.a.m 1
15.e even 4 2 2800.2.g.n 2
20.d odd 2 1 3150.2.a.bj 1
20.e even 4 2 3150.2.g.c 2
21.c even 2 1 3920.2.a.t 1
24.f even 2 1 2240.2.a.n 1
24.h odd 2 1 2240.2.a.q 1
28.d even 2 1 4410.2.a.b 1
60.h even 2 1 350.2.a.b 1
60.l odd 4 2 350.2.c.b 2
84.h odd 2 1 490.2.a.h 1
84.j odd 6 2 490.2.e.c 2
84.n even 6 2 490.2.e.d 2
132.d odd 2 1 8470.2.a.j 1
420.o odd 2 1 2450.2.a.l 1
420.w even 4 2 2450.2.c.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.a.a 1 12.b even 2 1
350.2.a.b 1 60.h even 2 1
350.2.c.b 2 60.l odd 4 2
490.2.a.h 1 84.h odd 2 1
490.2.e.c 2 84.j odd 6 2
490.2.e.d 2 84.n even 6 2
560.2.a.d 1 3.b odd 2 1
630.2.a.d 1 4.b odd 2 1
2240.2.a.n 1 24.f even 2 1
2240.2.a.q 1 24.h odd 2 1
2450.2.a.l 1 420.o odd 2 1
2450.2.c.k 2 420.w even 4 2
2800.2.a.m 1 15.d odd 2 1
2800.2.g.n 2 15.e even 4 2
3150.2.a.bj 1 20.d odd 2 1
3150.2.g.c 2 20.e even 4 2
3920.2.a.t 1 21.c even 2 1
4410.2.a.b 1 28.d even 2 1
5040.2.a.bm 1 1.a even 1 1 trivial
8470.2.a.j 1 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5040))\):

\( T_{11} - 4 \)
\( T_{13} + 6 \)
\( T_{17} + 2 \)
\( T_{19} \)
\( T_{29} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( -1 + T \)
$11$ \( -4 + T \)
$13$ \( 6 + T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( T \)
$29$ \( 6 + T \)
$31$ \( 8 + T \)
$37$ \( 10 + T \)
$41$ \( 2 + T \)
$43$ \( 4 + T \)
$47$ \( -8 + T \)
$53$ \( -2 + T \)
$59$ \( 8 + T \)
$61$ \( 14 + T \)
$67$ \( -12 + T \)
$71$ \( 16 + T \)
$73$ \( -2 + T \)
$79$ \( -8 + T \)
$83$ \( -8 + T \)
$89$ \( 10 + T \)
$97$ \( -2 + T \)
show more
show less