Defining parameters
| Level: | \( N \) | \(=\) | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5040.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 51 \) | ||
| Sturm bound: | \(2304\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5040))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1200 | 60 | 1140 |
| Cusp forms | 1105 | 60 | 1045 |
| Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(70\) | \(3\) | \(67\) | \(65\) | \(3\) | \(62\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(76\) | \(3\) | \(73\) | \(70\) | \(3\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(80\) | \(3\) | \(77\) | \(74\) | \(3\) | \(71\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(74\) | \(3\) | \(71\) | \(68\) | \(3\) | \(65\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(75\) | \(6\) | \(69\) | \(69\) | \(6\) | \(63\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(75\) | \(3\) | \(72\) | \(69\) | \(3\) | \(66\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(75\) | \(3\) | \(72\) | \(69\) | \(3\) | \(66\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(75\) | \(6\) | \(69\) | \(69\) | \(6\) | \(63\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(80\) | \(2\) | \(78\) | \(74\) | \(2\) | \(72\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(74\) | \(4\) | \(70\) | \(68\) | \(4\) | \(64\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(70\) | \(2\) | \(68\) | \(64\) | \(2\) | \(62\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(76\) | \(4\) | \(72\) | \(70\) | \(4\) | \(66\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(75\) | \(5\) | \(70\) | \(69\) | \(5\) | \(64\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(75\) | \(4\) | \(71\) | \(69\) | \(4\) | \(65\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(75\) | \(5\) | \(70\) | \(69\) | \(5\) | \(64\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(75\) | \(4\) | \(71\) | \(69\) | \(4\) | \(65\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(588\) | \(27\) | \(561\) | \(541\) | \(27\) | \(514\) | \(47\) | \(0\) | \(47\) | ||||||
| Minus space | \(-\) | \(612\) | \(33\) | \(579\) | \(564\) | \(33\) | \(531\) | \(48\) | \(0\) | \(48\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5040))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5040))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5040)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(252))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(315))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(504))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(560))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(630))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(720))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(840))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1008))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1260))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1680))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2520))\)\(^{\oplus 2}\)