Properties

Label 504.6.a.t
Level $504$
Weight $6$
Character orbit 504.a
Self dual yes
Analytic conductor $80.833$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.8334451857\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{249}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 62 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{249}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 32) q^{5} + 49 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 32) q^{5} + 49 q^{7} + (15 \beta - 270) q^{11} + ( - 16 \beta + 102) q^{13} + ( - 51 \beta - 152) q^{17} + (74 \beta - 560) q^{19} + (71 \beta + 470) q^{23} + ( - 64 \beta - 1105) q^{25} + ( - 10 \beta - 466) q^{29} + ( - 46 \beta - 8204) q^{31} + ( - 49 \beta + 1568) q^{35} + (148 \beta - 882) q^{37} + (531 \beta + 1276) q^{41} + ( - 28 \beta - 12316) q^{43} + (262 \beta + 18380) q^{47} + 2401 q^{49} + ( - 576 \beta - 4582) q^{53} + (750 \beta - 23580) q^{55} + ( - 682 \beta + 19944) q^{59} + ( - 722 \beta - 12542) q^{61} + ( - 614 \beta + 19200) q^{65} + ( - 1498 \beta - 1296) q^{67} + ( - 967 \beta + 17754) q^{71} + (594 \beta - 8594) q^{73} + (735 \beta - 13230) q^{77} + (1242 \beta - 47900) q^{79} + (1868 \beta - 32676) q^{83} + ( - 1480 \beta + 45932) q^{85} + ( - 1429 \beta + 11500) q^{89} + ( - 784 \beta + 4998) q^{91} + (2928 \beta - 91624) q^{95} + (2446 \beta - 54194) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{5} + 98 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 64 q^{5} + 98 q^{7} - 540 q^{11} + 204 q^{13} - 304 q^{17} - 1120 q^{19} + 940 q^{23} - 2210 q^{25} - 932 q^{29} - 16408 q^{31} + 3136 q^{35} - 1764 q^{37} + 2552 q^{41} - 24632 q^{43} + 36760 q^{47} + 4802 q^{49} - 9164 q^{53} - 47160 q^{55} + 39888 q^{59} - 25084 q^{61} + 38400 q^{65} - 2592 q^{67} + 35508 q^{71} - 17188 q^{73} - 26460 q^{77} - 95800 q^{79} - 65352 q^{83} + 91864 q^{85} + 23000 q^{89} + 9996 q^{91} - 183248 q^{95} - 108388 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.38987
−7.38987
0 0 0 0.440532 0 49.0000 0 0 0
1.2 0 0 0 63.5595 0 49.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.6.a.t 2
3.b odd 2 1 168.6.a.h 2
4.b odd 2 1 1008.6.a.bu 2
12.b even 2 1 336.6.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.6.a.h 2 3.b odd 2 1
336.6.a.w 2 12.b even 2 1
504.6.a.t 2 1.a even 1 1 trivial
1008.6.a.bu 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(504))\):

\( T_{5}^{2} - 64T_{5} + 28 \) Copy content Toggle raw display
\( T_{11}^{2} + 540T_{11} - 151200 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 64T + 28 \) Copy content Toggle raw display
$7$ \( (T - 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 540T - 151200 \) Copy content Toggle raw display
$13$ \( T^{2} - 204T - 244572 \) Copy content Toggle raw display
$17$ \( T^{2} + 304 T - 2567492 \) Copy content Toggle raw display
$19$ \( T^{2} + 1120 T - 5140496 \) Copy content Toggle raw display
$23$ \( T^{2} - 940 T - 4799936 \) Copy content Toggle raw display
$29$ \( T^{2} + 932T + 117556 \) Copy content Toggle raw display
$31$ \( T^{2} + 16408 T + 65198080 \) Copy content Toggle raw display
$37$ \( T^{2} + 1764 T - 21038460 \) Copy content Toggle raw display
$41$ \( T^{2} - 2552 T - 279204980 \) Copy content Toggle raw display
$43$ \( T^{2} + 24632 T + 150902992 \) Copy content Toggle raw display
$47$ \( T^{2} - 36760 T + 269454976 \) Copy content Toggle raw display
$53$ \( T^{2} + 9164 T - 309454172 \) Copy content Toggle raw display
$59$ \( T^{2} - 39888 T - 65500368 \) Copy content Toggle raw display
$61$ \( T^{2} + 25084 T - 361897100 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 2233348368 \) Copy content Toggle raw display
$71$ \( T^{2} - 35508 T - 616144128 \) Copy content Toggle raw display
$73$ \( T^{2} + 17188 T - 277567820 \) Copy content Toggle raw display
$79$ \( T^{2} + 95800 T + 758016256 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 2407745328 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1901622836 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 3021994700 \) Copy content Toggle raw display
show more
show less