Properties

Label 504.6.a.r.1.2
Level $504$
Weight $6$
Character 504.1
Self dual yes
Analytic conductor $80.833$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.8334451857\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.54138\) of defining polynomial
Character \(\chi\) \(=\) 504.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+84.8276 q^{5} -49.0000 q^{7} +O(q^{10})\) \(q+84.8276 q^{5} -49.0000 q^{7} +634.124 q^{11} +895.242 q^{13} -2057.46 q^{17} +2451.95 q^{19} +569.186 q^{23} +4070.73 q^{25} -1471.78 q^{29} -2006.65 q^{31} -4156.55 q^{35} +4860.54 q^{37} +17228.4 q^{41} -15481.3 q^{43} -5006.40 q^{47} +2401.00 q^{49} +19560.3 q^{53} +53791.3 q^{55} -14515.6 q^{59} +3572.67 q^{61} +75941.3 q^{65} -41480.7 q^{67} -9247.05 q^{71} -41350.0 q^{73} -31072.1 q^{77} -37962.2 q^{79} -79211.1 q^{83} -174530. q^{85} +92538.5 q^{89} -43866.9 q^{91} +207993. q^{95} +175419. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 48 q^{5} - 98 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 48 q^{5} - 98 q^{7} + 368 q^{11} - 156 q^{13} - 3312 q^{17} + 3736 q^{19} + 1552 q^{23} + 2302 q^{25} + 1728 q^{29} - 3624 q^{31} - 2352 q^{35} + 6996 q^{37} + 26160 q^{41} - 30184 q^{43} - 11424 q^{47} + 4802 q^{49} - 17376 q^{53} + 63592 q^{55} + 15008 q^{59} + 35564 q^{61} + 114656 q^{65} - 70504 q^{67} + 40752 q^{71} - 53892 q^{73} - 18032 q^{77} - 9744 q^{79} + 31360 q^{83} - 128328 q^{85} + 35952 q^{89} + 7644 q^{91} + 160704 q^{95} + 66652 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 84.8276 1.51744 0.758721 0.651415i \(-0.225824\pi\)
0.758721 + 0.651415i \(0.225824\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 634.124 1.58013 0.790065 0.613023i \(-0.210047\pi\)
0.790065 + 0.613023i \(0.210047\pi\)
\(12\) 0 0
\(13\) 895.242 1.46920 0.734602 0.678498i \(-0.237369\pi\)
0.734602 + 0.678498i \(0.237369\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2057.46 −1.72667 −0.863335 0.504630i \(-0.831629\pi\)
−0.863335 + 0.504630i \(0.831629\pi\)
\(18\) 0 0
\(19\) 2451.95 1.55821 0.779106 0.626892i \(-0.215673\pi\)
0.779106 + 0.626892i \(0.215673\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 569.186 0.224354 0.112177 0.993688i \(-0.464218\pi\)
0.112177 + 0.993688i \(0.464218\pi\)
\(24\) 0 0
\(25\) 4070.73 1.30263
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1471.78 −0.324974 −0.162487 0.986711i \(-0.551951\pi\)
−0.162487 + 0.986711i \(0.551951\pi\)
\(30\) 0 0
\(31\) −2006.65 −0.375031 −0.187515 0.982262i \(-0.560043\pi\)
−0.187515 + 0.982262i \(0.560043\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4156.55 −0.573539
\(36\) 0 0
\(37\) 4860.54 0.583687 0.291844 0.956466i \(-0.405731\pi\)
0.291844 + 0.956466i \(0.405731\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 17228.4 1.60061 0.800307 0.599591i \(-0.204670\pi\)
0.800307 + 0.599591i \(0.204670\pi\)
\(42\) 0 0
\(43\) −15481.3 −1.27684 −0.638420 0.769689i \(-0.720412\pi\)
−0.638420 + 0.769689i \(0.720412\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5006.40 −0.330583 −0.165292 0.986245i \(-0.552857\pi\)
−0.165292 + 0.986245i \(0.552857\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 19560.3 0.956504 0.478252 0.878223i \(-0.341271\pi\)
0.478252 + 0.878223i \(0.341271\pi\)
\(54\) 0 0
\(55\) 53791.3 2.39776
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14515.6 −0.542881 −0.271441 0.962455i \(-0.587500\pi\)
−0.271441 + 0.962455i \(0.587500\pi\)
\(60\) 0 0
\(61\) 3572.67 0.122933 0.0614664 0.998109i \(-0.480422\pi\)
0.0614664 + 0.998109i \(0.480422\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 75941.3 2.22943
\(66\) 0 0
\(67\) −41480.7 −1.12891 −0.564455 0.825464i \(-0.690914\pi\)
−0.564455 + 0.825464i \(0.690914\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9247.05 −0.217700 −0.108850 0.994058i \(-0.534717\pi\)
−0.108850 + 0.994058i \(0.534717\pi\)
\(72\) 0 0
\(73\) −41350.0 −0.908172 −0.454086 0.890958i \(-0.650034\pi\)
−0.454086 + 0.890958i \(0.650034\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −31072.1 −0.597233
\(78\) 0 0
\(79\) −37962.2 −0.684359 −0.342179 0.939635i \(-0.611165\pi\)
−0.342179 + 0.939635i \(0.611165\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −79211.1 −1.26209 −0.631046 0.775746i \(-0.717374\pi\)
−0.631046 + 0.775746i \(0.717374\pi\)
\(84\) 0 0
\(85\) −174530. −2.62012
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 92538.5 1.23836 0.619181 0.785248i \(-0.287465\pi\)
0.619181 + 0.785248i \(0.287465\pi\)
\(90\) 0 0
\(91\) −43866.9 −0.555307
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 207993. 2.36450
\(96\) 0 0
\(97\) 175419. 1.89299 0.946495 0.322720i \(-0.104597\pi\)
0.946495 + 0.322720i \(0.104597\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −56163.2 −0.547834 −0.273917 0.961753i \(-0.588319\pi\)
−0.273917 + 0.961753i \(0.588319\pi\)
\(102\) 0 0
\(103\) −158376. −1.47095 −0.735474 0.677553i \(-0.763040\pi\)
−0.735474 + 0.677553i \(0.763040\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 23496.4 0.198400 0.0992001 0.995068i \(-0.468372\pi\)
0.0992001 + 0.995068i \(0.468372\pi\)
\(108\) 0 0
\(109\) 205342. 1.65543 0.827715 0.561148i \(-0.189640\pi\)
0.827715 + 0.561148i \(0.189640\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 185993. 1.37025 0.685125 0.728426i \(-0.259748\pi\)
0.685125 + 0.728426i \(0.259748\pi\)
\(114\) 0 0
\(115\) 48282.7 0.340445
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 100816. 0.652620
\(120\) 0 0
\(121\) 241063. 1.49681
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 80223.7 0.459227
\(126\) 0 0
\(127\) 348363. 1.91656 0.958281 0.285828i \(-0.0922685\pi\)
0.958281 + 0.285828i \(0.0922685\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 294849. 1.50114 0.750571 0.660790i \(-0.229779\pi\)
0.750571 + 0.660790i \(0.229779\pi\)
\(132\) 0 0
\(133\) −120145. −0.588949
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −119607. −0.544446 −0.272223 0.962234i \(-0.587759\pi\)
−0.272223 + 0.962234i \(0.587759\pi\)
\(138\) 0 0
\(139\) 145630. 0.639312 0.319656 0.947534i \(-0.396433\pi\)
0.319656 + 0.947534i \(0.396433\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 567695. 2.32153
\(144\) 0 0
\(145\) −124848. −0.493129
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −49750.8 −0.183584 −0.0917919 0.995778i \(-0.529259\pi\)
−0.0917919 + 0.995778i \(0.529259\pi\)
\(150\) 0 0
\(151\) −214254. −0.764691 −0.382346 0.924019i \(-0.624884\pi\)
−0.382346 + 0.924019i \(0.624884\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −170219. −0.569088
\(156\) 0 0
\(157\) −197114. −0.638217 −0.319108 0.947718i \(-0.603383\pi\)
−0.319108 + 0.947718i \(0.603383\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −27890.1 −0.0847980
\(162\) 0 0
\(163\) 103013. 0.303686 0.151843 0.988405i \(-0.451479\pi\)
0.151843 + 0.988405i \(0.451479\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 231396. 0.642044 0.321022 0.947072i \(-0.395974\pi\)
0.321022 + 0.947072i \(0.395974\pi\)
\(168\) 0 0
\(169\) 430165. 1.15856
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 207599. 0.527365 0.263682 0.964610i \(-0.415063\pi\)
0.263682 + 0.964610i \(0.415063\pi\)
\(174\) 0 0
\(175\) −199466. −0.492349
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 713483. 1.66438 0.832188 0.554494i \(-0.187088\pi\)
0.832188 + 0.554494i \(0.187088\pi\)
\(180\) 0 0
\(181\) 241894. 0.548818 0.274409 0.961613i \(-0.411518\pi\)
0.274409 + 0.961613i \(0.411518\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 412308. 0.885712
\(186\) 0 0
\(187\) −1.30469e6 −2.72836
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 220340. 0.437029 0.218515 0.975834i \(-0.429879\pi\)
0.218515 + 0.975834i \(0.429879\pi\)
\(192\) 0 0
\(193\) −736048. −1.42237 −0.711185 0.703005i \(-0.751841\pi\)
−0.711185 + 0.703005i \(0.751841\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 586422. 1.07658 0.538288 0.842761i \(-0.319071\pi\)
0.538288 + 0.842761i \(0.319071\pi\)
\(198\) 0 0
\(199\) −680230. −1.21765 −0.608826 0.793304i \(-0.708359\pi\)
−0.608826 + 0.793304i \(0.708359\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 72117.3 0.122828
\(204\) 0 0
\(205\) 1.46145e6 2.42884
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.55484e6 2.46218
\(210\) 0 0
\(211\) 142662. 0.220598 0.110299 0.993898i \(-0.464819\pi\)
0.110299 + 0.993898i \(0.464819\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.31324e6 −1.93753
\(216\) 0 0
\(217\) 98325.8 0.141748
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.84193e6 −2.53683
\(222\) 0 0
\(223\) −1.41803e6 −1.90952 −0.954760 0.297377i \(-0.903888\pi\)
−0.954760 + 0.297377i \(0.903888\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −75557.1 −0.0973219 −0.0486610 0.998815i \(-0.515495\pi\)
−0.0486610 + 0.998815i \(0.515495\pi\)
\(228\) 0 0
\(229\) 1.29149e6 1.62743 0.813714 0.581265i \(-0.197442\pi\)
0.813714 + 0.581265i \(0.197442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 112997. 0.136357 0.0681783 0.997673i \(-0.478281\pi\)
0.0681783 + 0.997673i \(0.478281\pi\)
\(234\) 0 0
\(235\) −424681. −0.501641
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 473209. 0.535869 0.267935 0.963437i \(-0.413659\pi\)
0.267935 + 0.963437i \(0.413659\pi\)
\(240\) 0 0
\(241\) −1.39122e6 −1.54296 −0.771478 0.636256i \(-0.780482\pi\)
−0.771478 + 0.636256i \(0.780482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 203671. 0.216778
\(246\) 0 0
\(247\) 2.19508e6 2.28933
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −776017. −0.777476 −0.388738 0.921348i \(-0.627089\pi\)
−0.388738 + 0.921348i \(0.627089\pi\)
\(252\) 0 0
\(253\) 360935. 0.354509
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 955090. 0.902011 0.451005 0.892521i \(-0.351066\pi\)
0.451005 + 0.892521i \(0.351066\pi\)
\(258\) 0 0
\(259\) −238166. −0.220613
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −190821. −0.170113 −0.0850566 0.996376i \(-0.527107\pi\)
−0.0850566 + 0.996376i \(0.527107\pi\)
\(264\) 0 0
\(265\) 1.65926e6 1.45144
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 224114. 0.188837 0.0944186 0.995533i \(-0.469901\pi\)
0.0944186 + 0.995533i \(0.469901\pi\)
\(270\) 0 0
\(271\) 687404. 0.568577 0.284288 0.958739i \(-0.408243\pi\)
0.284288 + 0.958739i \(0.408243\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.58135e6 2.05833
\(276\) 0 0
\(277\) −1.14588e6 −0.897302 −0.448651 0.893707i \(-0.648095\pi\)
−0.448651 + 0.893707i \(0.648095\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 755908. 0.571088 0.285544 0.958366i \(-0.407826\pi\)
0.285544 + 0.958366i \(0.407826\pi\)
\(282\) 0 0
\(283\) −1.92464e6 −1.42851 −0.714257 0.699884i \(-0.753235\pi\)
−0.714257 + 0.699884i \(0.753235\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −844194. −0.604975
\(288\) 0 0
\(289\) 2.81329e6 1.98139
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.46185e6 −0.994795 −0.497398 0.867523i \(-0.665711\pi\)
−0.497398 + 0.867523i \(0.665711\pi\)
\(294\) 0 0
\(295\) −1.23132e6 −0.823791
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 509559. 0.329622
\(300\) 0 0
\(301\) 758584. 0.482600
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 303061. 0.186544
\(306\) 0 0
\(307\) 1.06474e6 0.644756 0.322378 0.946611i \(-0.395518\pi\)
0.322378 + 0.946611i \(0.395518\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.59214e6 −1.51970 −0.759850 0.650098i \(-0.774728\pi\)
−0.759850 + 0.650098i \(0.774728\pi\)
\(312\) 0 0
\(313\) −2.14280e6 −1.23629 −0.618147 0.786063i \(-0.712116\pi\)
−0.618147 + 0.786063i \(0.712116\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.02229e6 −1.68923 −0.844613 0.535377i \(-0.820170\pi\)
−0.844613 + 0.535377i \(0.820170\pi\)
\(318\) 0 0
\(319\) −933292. −0.513501
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.04478e6 −2.69052
\(324\) 0 0
\(325\) 3.64428e6 1.91383
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 245314. 0.124949
\(330\) 0 0
\(331\) −1.03801e6 −0.520751 −0.260376 0.965507i \(-0.583846\pi\)
−0.260376 + 0.965507i \(0.583846\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.51871e6 −1.71306
\(336\) 0 0
\(337\) 2.23059e6 1.06991 0.534953 0.844882i \(-0.320329\pi\)
0.534953 + 0.844882i \(0.320329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.27246e6 −0.592598
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.57483e6 1.14795 0.573977 0.818872i \(-0.305400\pi\)
0.573977 + 0.818872i \(0.305400\pi\)
\(348\) 0 0
\(349\) 311098. 0.136721 0.0683604 0.997661i \(-0.478223\pi\)
0.0683604 + 0.997661i \(0.478223\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.77642e6 1.61303 0.806517 0.591212i \(-0.201350\pi\)
0.806517 + 0.591212i \(0.201350\pi\)
\(354\) 0 0
\(355\) −784406. −0.330347
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −996020. −0.407880 −0.203940 0.978983i \(-0.565375\pi\)
−0.203940 + 0.978983i \(0.565375\pi\)
\(360\) 0 0
\(361\) 3.53594e6 1.42803
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.50762e6 −1.37810
\(366\) 0 0
\(367\) −3.83928e6 −1.48794 −0.743969 0.668214i \(-0.767059\pi\)
−0.743969 + 0.668214i \(0.767059\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −958457. −0.361525
\(372\) 0 0
\(373\) −5.05517e6 −1.88132 −0.940662 0.339344i \(-0.889795\pi\)
−0.940662 + 0.339344i \(0.889795\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.31760e6 −0.477453
\(378\) 0 0
\(379\) −3.46825e6 −1.24026 −0.620129 0.784500i \(-0.712920\pi\)
−0.620129 + 0.784500i \(0.712920\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.58445e6 1.24861 0.624304 0.781182i \(-0.285383\pi\)
0.624304 + 0.781182i \(0.285383\pi\)
\(384\) 0 0
\(385\) −2.63577e6 −0.906267
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.86098e6 −1.29367 −0.646834 0.762630i \(-0.723908\pi\)
−0.646834 + 0.762630i \(0.723908\pi\)
\(390\) 0 0
\(391\) −1.17108e6 −0.387386
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.22025e6 −1.03848
\(396\) 0 0
\(397\) −1.20136e6 −0.382559 −0.191280 0.981536i \(-0.561264\pi\)
−0.191280 + 0.981536i \(0.561264\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.88850e6 −1.20760 −0.603798 0.797138i \(-0.706347\pi\)
−0.603798 + 0.797138i \(0.706347\pi\)
\(402\) 0 0
\(403\) −1.79644e6 −0.550997
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.08219e6 0.922301
\(408\) 0 0
\(409\) 2.63640e6 0.779296 0.389648 0.920964i \(-0.372597\pi\)
0.389648 + 0.920964i \(0.372597\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 711264. 0.205190
\(414\) 0 0
\(415\) −6.71929e6 −1.91515
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 432053. 0.120227 0.0601134 0.998192i \(-0.480854\pi\)
0.0601134 + 0.998192i \(0.480854\pi\)
\(420\) 0 0
\(421\) 3.31215e6 0.910763 0.455381 0.890296i \(-0.349503\pi\)
0.455381 + 0.890296i \(0.349503\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.37537e6 −2.24922
\(426\) 0 0
\(427\) −175061. −0.0464642
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.30508e6 1.37562 0.687811 0.725890i \(-0.258572\pi\)
0.687811 + 0.725890i \(0.258572\pi\)
\(432\) 0 0
\(433\) −2.86645e6 −0.734723 −0.367362 0.930078i \(-0.619739\pi\)
−0.367362 + 0.930078i \(0.619739\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.39561e6 0.349592
\(438\) 0 0
\(439\) 758493. 0.187841 0.0939205 0.995580i \(-0.470060\pi\)
0.0939205 + 0.995580i \(0.470060\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.02230e6 −0.731693 −0.365846 0.930675i \(-0.619220\pi\)
−0.365846 + 0.930675i \(0.619220\pi\)
\(444\) 0 0
\(445\) 7.84982e6 1.87914
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.55957e6 −1.30144 −0.650721 0.759317i \(-0.725533\pi\)
−0.650721 + 0.759317i \(0.725533\pi\)
\(450\) 0 0
\(451\) 1.09250e7 2.52918
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.72112e6 −0.842646
\(456\) 0 0
\(457\) 1.48117e6 0.331752 0.165876 0.986147i \(-0.446955\pi\)
0.165876 + 0.986147i \(0.446955\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12329.0 −0.00270193 −0.00135097 0.999999i \(-0.500430\pi\)
−0.00135097 + 0.999999i \(0.500430\pi\)
\(462\) 0 0
\(463\) −1.27201e6 −0.275765 −0.137882 0.990449i \(-0.544030\pi\)
−0.137882 + 0.990449i \(0.544030\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.15829e6 1.51886 0.759429 0.650590i \(-0.225479\pi\)
0.759429 + 0.650590i \(0.225479\pi\)
\(468\) 0 0
\(469\) 2.03256e6 0.426688
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.81707e6 −2.01757
\(474\) 0 0
\(475\) 9.98120e6 2.02978
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.01478e6 0.998649 0.499325 0.866415i \(-0.333582\pi\)
0.499325 + 0.866415i \(0.333582\pi\)
\(480\) 0 0
\(481\) 4.35136e6 0.857555
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.48804e7 2.87250
\(486\) 0 0
\(487\) 6.46712e6 1.23563 0.617815 0.786323i \(-0.288018\pi\)
0.617815 + 0.786323i \(0.288018\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.89564e6 −1.29084 −0.645418 0.763829i \(-0.723317\pi\)
−0.645418 + 0.763829i \(0.723317\pi\)
\(492\) 0 0
\(493\) 3.02813e6 0.561123
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 453106. 0.0822827
\(498\) 0 0
\(499\) −1.00230e7 −1.80196 −0.900979 0.433862i \(-0.857151\pi\)
−0.900979 + 0.433862i \(0.857151\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.02505e7 −1.80644 −0.903220 0.429178i \(-0.858803\pi\)
−0.903220 + 0.429178i \(0.858803\pi\)
\(504\) 0 0
\(505\) −4.76419e6 −0.831306
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.95058e6 −0.333710 −0.166855 0.985981i \(-0.553361\pi\)
−0.166855 + 0.985981i \(0.553361\pi\)
\(510\) 0 0
\(511\) 2.02615e6 0.343257
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.34347e7 −2.23208
\(516\) 0 0
\(517\) −3.17468e6 −0.522364
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.02692e6 0.811349 0.405674 0.914018i \(-0.367037\pi\)
0.405674 + 0.914018i \(0.367037\pi\)
\(522\) 0 0
\(523\) −356811. −0.0570405 −0.0285203 0.999593i \(-0.509080\pi\)
−0.0285203 + 0.999593i \(0.509080\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.12860e6 0.647555
\(528\) 0 0
\(529\) −6.11237e6 −0.949665
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.54236e7 2.35163
\(534\) 0 0
\(535\) 1.99314e6 0.301061
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.52253e6 0.225733
\(540\) 0 0
\(541\) −1.16485e7 −1.71111 −0.855555 0.517712i \(-0.826784\pi\)
−0.855555 + 0.517712i \(0.826784\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.74187e7 2.51202
\(546\) 0 0
\(547\) −2.56657e6 −0.366763 −0.183382 0.983042i \(-0.558704\pi\)
−0.183382 + 0.983042i \(0.558704\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.60873e6 −0.506378
\(552\) 0 0
\(553\) 1.86015e6 0.258663
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.19382e6 −1.25562 −0.627809 0.778367i \(-0.716048\pi\)
−0.627809 + 0.778367i \(0.716048\pi\)
\(558\) 0 0
\(559\) −1.38595e7 −1.87594
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.73412e6 0.363535 0.181768 0.983342i \(-0.441818\pi\)
0.181768 + 0.983342i \(0.441818\pi\)
\(564\) 0 0
\(565\) 1.57773e7 2.07927
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.51619e6 0.714264 0.357132 0.934054i \(-0.383755\pi\)
0.357132 + 0.934054i \(0.383755\pi\)
\(570\) 0 0
\(571\) −1.15557e7 −1.48322 −0.741612 0.670829i \(-0.765938\pi\)
−0.741612 + 0.670829i \(0.765938\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.31700e6 0.292251
\(576\) 0 0
\(577\) −9.36955e6 −1.17160 −0.585800 0.810456i \(-0.699220\pi\)
−0.585800 + 0.810456i \(0.699220\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.88134e6 0.477026
\(582\) 0 0
\(583\) 1.24037e7 1.51140
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.61313e6 0.432801 0.216400 0.976305i \(-0.430568\pi\)
0.216400 + 0.976305i \(0.430568\pi\)
\(588\) 0 0
\(589\) −4.92019e6 −0.584378
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.65554e6 −1.12756 −0.563780 0.825925i \(-0.690654\pi\)
−0.563780 + 0.825925i \(0.690654\pi\)
\(594\) 0 0
\(595\) 8.55195e6 0.990314
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.36706e6 0.838932 0.419466 0.907771i \(-0.362217\pi\)
0.419466 + 0.907771i \(0.362217\pi\)
\(600\) 0 0
\(601\) −9.04647e6 −1.02163 −0.510814 0.859691i \(-0.670656\pi\)
−0.510814 + 0.859691i \(0.670656\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.04488e7 2.27132
\(606\) 0 0
\(607\) 1.07723e7 1.18669 0.593345 0.804948i \(-0.297807\pi\)
0.593345 + 0.804948i \(0.297807\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.48194e6 −0.485694
\(612\) 0 0
\(613\) 5.64815e6 0.607093 0.303547 0.952817i \(-0.401829\pi\)
0.303547 + 0.952817i \(0.401829\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.21062e7 −1.28025 −0.640123 0.768272i \(-0.721117\pi\)
−0.640123 + 0.768272i \(0.721117\pi\)
\(618\) 0 0
\(619\) −3.22164e6 −0.337948 −0.168974 0.985620i \(-0.554045\pi\)
−0.168974 + 0.985620i \(0.554045\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.53439e6 −0.468057
\(624\) 0 0
\(625\) −5.91583e6 −0.605781
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.00004e7 −1.00784
\(630\) 0 0
\(631\) −8.59962e6 −0.859816 −0.429908 0.902873i \(-0.641454\pi\)
−0.429908 + 0.902873i \(0.641454\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.95508e7 2.90827
\(636\) 0 0
\(637\) 2.14948e6 0.209886
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.89346e6 0.854920 0.427460 0.904034i \(-0.359408\pi\)
0.427460 + 0.904034i \(0.359408\pi\)
\(642\) 0 0
\(643\) −6.57628e6 −0.627268 −0.313634 0.949544i \(-0.601546\pi\)
−0.313634 + 0.949544i \(0.601546\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.16128e7 1.09063 0.545313 0.838232i \(-0.316411\pi\)
0.545313 + 0.838232i \(0.316411\pi\)
\(648\) 0 0
\(649\) −9.20470e6 −0.857823
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.03391e6 0.645527 0.322763 0.946480i \(-0.395388\pi\)
0.322763 + 0.946480i \(0.395388\pi\)
\(654\) 0 0
\(655\) 2.50114e7 2.27790
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.10193e7 −0.988422 −0.494211 0.869342i \(-0.664543\pi\)
−0.494211 + 0.869342i \(0.664543\pi\)
\(660\) 0 0
\(661\) 3.37812e6 0.300726 0.150363 0.988631i \(-0.451956\pi\)
0.150363 + 0.988631i \(0.451956\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.01916e7 −0.893696
\(666\) 0 0
\(667\) −837717. −0.0729093
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.26552e6 0.194250
\(672\) 0 0
\(673\) −3.46735e6 −0.295094 −0.147547 0.989055i \(-0.547138\pi\)
−0.147547 + 0.989055i \(0.547138\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.81353e7 1.52074 0.760369 0.649492i \(-0.225018\pi\)
0.760369 + 0.649492i \(0.225018\pi\)
\(678\) 0 0
\(679\) −8.59555e6 −0.715483
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.60726e7 1.31836 0.659182 0.751983i \(-0.270903\pi\)
0.659182 + 0.751983i \(0.270903\pi\)
\(684\) 0 0
\(685\) −1.01460e7 −0.826166
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.75112e7 1.40530
\(690\) 0 0
\(691\) 779272. 0.0620860 0.0310430 0.999518i \(-0.490117\pi\)
0.0310430 + 0.999518i \(0.490117\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.23534e7 0.970120
\(696\) 0 0
\(697\) −3.54469e7 −2.76373
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −616669. −0.0473977 −0.0236989 0.999719i \(-0.507544\pi\)
−0.0236989 + 0.999719i \(0.507544\pi\)
\(702\) 0 0
\(703\) 1.19178e7 0.909509
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.75200e6 0.207062
\(708\) 0 0
\(709\) 1.94867e7 1.45587 0.727935 0.685646i \(-0.240480\pi\)
0.727935 + 0.685646i \(0.240480\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.14216e6 −0.0841398
\(714\) 0 0
\(715\) 4.81562e7 3.52279
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.07365e6 −0.438155 −0.219078 0.975707i \(-0.570305\pi\)
−0.219078 + 0.975707i \(0.570305\pi\)
\(720\) 0 0
\(721\) 7.76044e6 0.555966
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.99122e6 −0.423321
\(726\) 0 0
\(727\) 9.38803e6 0.658777 0.329389 0.944194i \(-0.393157\pi\)
0.329389 + 0.944194i \(0.393157\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.18522e7 2.20468
\(732\) 0 0
\(733\) 6.87253e6 0.472451 0.236226 0.971698i \(-0.424090\pi\)
0.236226 + 0.971698i \(0.424090\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.63040e7 −1.78383
\(738\) 0 0
\(739\) 3.13208e6 0.210970 0.105485 0.994421i \(-0.466360\pi\)
0.105485 + 0.994421i \(0.466360\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.05007e6 −0.534968 −0.267484 0.963562i \(-0.586192\pi\)
−0.267484 + 0.963562i \(0.586192\pi\)
\(744\) 0 0
\(745\) −4.22024e6 −0.278578
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.15132e6 −0.0749882
\(750\) 0 0
\(751\) −1.51621e7 −0.980976 −0.490488 0.871448i \(-0.663181\pi\)
−0.490488 + 0.871448i \(0.663181\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.81746e7 −1.16037
\(756\) 0 0
\(757\) 3.86111e6 0.244891 0.122445 0.992475i \(-0.460926\pi\)
0.122445 + 0.992475i \(0.460926\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.74204e7 1.71638 0.858188 0.513335i \(-0.171590\pi\)
0.858188 + 0.513335i \(0.171590\pi\)
\(762\) 0 0
\(763\) −1.00617e7 −0.625694
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.29950e7 −0.797603
\(768\) 0 0
\(769\) 7.96097e6 0.485456 0.242728 0.970094i \(-0.421958\pi\)
0.242728 + 0.970094i \(0.421958\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.09621e6 −0.246566 −0.123283 0.992372i \(-0.539342\pi\)
−0.123283 + 0.992372i \(0.539342\pi\)
\(774\) 0 0
\(775\) −8.16852e6 −0.488527
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.22432e7 2.49410
\(780\) 0 0
\(781\) −5.86378e6 −0.343994
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.67207e7 −0.968457
\(786\) 0 0
\(787\) 1.43564e7 0.826244 0.413122 0.910676i \(-0.364438\pi\)
0.413122 + 0.910676i \(0.364438\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.11364e6 −0.517906
\(792\) 0 0
\(793\) 3.19840e6 0.180613
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.61963e7 −1.46081 −0.730407 0.683012i \(-0.760670\pi\)
−0.730407 + 0.683012i \(0.760670\pi\)
\(798\) 0 0
\(799\) 1.03005e7 0.570809
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.62210e7 −1.43503
\(804\) 0 0
\(805\) −2.36585e6 −0.128676
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.31159e6 −0.177896 −0.0889478 0.996036i \(-0.528350\pi\)
−0.0889478 + 0.996036i \(0.528350\pi\)
\(810\) 0 0
\(811\) 6.43440e6 0.343523 0.171761 0.985139i \(-0.445054\pi\)
0.171761 + 0.985139i \(0.445054\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.73839e6 0.460826
\(816\) 0 0
\(817\) −3.79593e7 −1.98959
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.12076e7 1.09808 0.549039 0.835796i \(-0.314994\pi\)
0.549039 + 0.835796i \(0.314994\pi\)
\(822\) 0 0
\(823\) 1.96206e7 1.00975 0.504875 0.863193i \(-0.331539\pi\)
0.504875 + 0.863193i \(0.331539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.34210e6 −0.474986 −0.237493 0.971389i \(-0.576326\pi\)
−0.237493 + 0.971389i \(0.576326\pi\)
\(828\) 0 0
\(829\) −8.15436e6 −0.412101 −0.206050 0.978541i \(-0.566061\pi\)
−0.206050 + 0.978541i \(0.566061\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.93997e6 −0.246667
\(834\) 0 0
\(835\) 1.96288e7 0.974265
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.14558e6 0.203320 0.101660 0.994819i \(-0.467585\pi\)
0.101660 + 0.994819i \(0.467585\pi\)
\(840\) 0 0
\(841\) −1.83450e7 −0.894392
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.64899e7 1.75805
\(846\) 0 0
\(847\) −1.18121e7 −0.565741
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.76655e6 0.130953
\(852\) 0 0
\(853\) 3.40559e6 0.160258 0.0801291 0.996784i \(-0.474467\pi\)
0.0801291 + 0.996784i \(0.474467\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.26615e6 0.105399 0.0526996 0.998610i \(-0.483217\pi\)
0.0526996 + 0.998610i \(0.483217\pi\)
\(858\) 0 0
\(859\) −1.45799e7 −0.674174 −0.337087 0.941474i \(-0.609442\pi\)
−0.337087 + 0.941474i \(0.609442\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.37184e7 1.54113 0.770567 0.637359i \(-0.219973\pi\)
0.770567 + 0.637359i \(0.219973\pi\)
\(864\) 0 0
\(865\) 1.76102e7 0.800245
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.40728e7 −1.08138
\(870\) 0 0
\(871\) −3.71353e7 −1.65860
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.93096e6 −0.173572
\(876\) 0 0
\(877\) 1.34267e7 0.589481 0.294740 0.955577i \(-0.404767\pi\)
0.294740 + 0.955577i \(0.404767\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.01261e6 −0.260990 −0.130495 0.991449i \(-0.541657\pi\)
−0.130495 + 0.991449i \(0.541657\pi\)
\(882\) 0 0
\(883\) −4.30820e7 −1.85949 −0.929747 0.368200i \(-0.879974\pi\)
−0.929747 + 0.368200i \(0.879974\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.82279e7 −1.20467 −0.602336 0.798242i \(-0.705763\pi\)
−0.602336 + 0.798242i \(0.705763\pi\)
\(888\) 0 0
\(889\) −1.70698e7 −0.724392
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.22754e7 −0.515119
\(894\) 0 0
\(895\) 6.05231e7 2.52559
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.95335e6 0.121875
\(900\) 0 0
\(901\) −4.02447e7 −1.65157
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.05193e7 0.832799
\(906\) 0 0
\(907\) −1.56044e7 −0.629836 −0.314918 0.949119i \(-0.601977\pi\)
−0.314918 + 0.949119i \(0.601977\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.33384e6 0.252855 0.126427 0.991976i \(-0.459649\pi\)
0.126427 + 0.991976i \(0.459649\pi\)
\(912\) 0 0
\(913\) −5.02297e7 −1.99427
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.44476e7 −0.567378
\(918\) 0 0
\(919\) 2.11662e7 0.826713 0.413357 0.910569i \(-0.364356\pi\)
0.413357 + 0.910569i \(0.364356\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.27835e6 −0.319845
\(924\) 0 0
\(925\) 1.97859e7 0.760330
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.25377e6 0.123694 0.0618468 0.998086i \(-0.480301\pi\)
0.0618468 + 0.998086i \(0.480301\pi\)
\(930\) 0 0
\(931\) 5.88712e6 0.222602
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.10674e8 −4.14014
\(936\) 0 0
\(937\) −1.00930e7 −0.375555 −0.187777 0.982212i \(-0.560128\pi\)
−0.187777 + 0.982212i \(0.560128\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.04029e7 1.11929 0.559643 0.828734i \(-0.310938\pi\)
0.559643 + 0.828734i \(0.310938\pi\)
\(942\) 0 0
\(943\) 9.80619e6 0.359105
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.37126e7 −1.58391 −0.791957 0.610577i \(-0.790938\pi\)
−0.791957 + 0.610577i \(0.790938\pi\)
\(948\) 0 0
\(949\) −3.70182e7 −1.33429
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.31900e7 −0.827120 −0.413560 0.910477i \(-0.635715\pi\)
−0.413560 + 0.910477i \(0.635715\pi\)
\(954\) 0 0
\(955\) 1.86909e7 0.663167
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.86074e6 0.205781
\(960\) 0 0
\(961\) −2.46025e7 −0.859352
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.24372e7 −2.15837
\(966\) 0 0
\(967\) −2.78623e7 −0.958188 −0.479094 0.877764i \(-0.659035\pi\)
−0.479094 + 0.877764i \(0.659035\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.65933e7 −1.24553 −0.622763 0.782410i \(-0.713990\pi\)
−0.622763 + 0.782410i \(0.713990\pi\)
\(972\) 0 0
\(973\) −7.13586e6 −0.241637
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.83769e7 −0.615938 −0.307969 0.951396i \(-0.599649\pi\)
−0.307969 + 0.951396i \(0.599649\pi\)
\(978\) 0 0
\(979\) 5.86809e7 1.95677
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.09387e7 1.68137 0.840687 0.541522i \(-0.182152\pi\)
0.840687 + 0.541522i \(0.182152\pi\)
\(984\) 0 0
\(985\) 4.97448e7 1.63364
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.81174e6 −0.286465
\(990\) 0 0
\(991\) −946169. −0.0306044 −0.0153022 0.999883i \(-0.504871\pi\)
−0.0153022 + 0.999883i \(0.504871\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.77023e7 −1.84772
\(996\) 0 0
\(997\) 8.61505e6 0.274486 0.137243 0.990537i \(-0.456176\pi\)
0.137243 + 0.990537i \(0.456176\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.6.a.r.1.2 yes 2
3.2 odd 2 504.6.a.l.1.1 2
4.3 odd 2 1008.6.a.bs.1.2 2
12.11 even 2 1008.6.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.6.a.l.1.1 2 3.2 odd 2
504.6.a.r.1.2 yes 2 1.1 even 1 trivial
1008.6.a.bh.1.1 2 12.11 even 2
1008.6.a.bs.1.2 2 4.3 odd 2