Properties

Label 504.6.a.o.1.2
Level $504$
Weight $6$
Character 504.1
Self dual yes
Analytic conductor $80.833$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.8334451857\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-16.3003\) of defining polynomial
Character \(\chi\) \(=\) 504.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+67.2012 q^{5} -49.0000 q^{7} +O(q^{10})\) \(q+67.2012 q^{5} -49.0000 q^{7} -117.201 q^{11} -267.610 q^{13} -374.396 q^{17} +2681.62 q^{19} -4634.86 q^{23} +1391.00 q^{25} -2514.04 q^{29} -2858.47 q^{31} -3292.86 q^{35} -10078.9 q^{37} -14085.7 q^{41} +14615.3 q^{43} +11153.1 q^{47} +2401.00 q^{49} -34902.3 q^{53} -7876.06 q^{55} +28830.9 q^{59} +30231.0 q^{61} -17983.7 q^{65} +40476.2 q^{67} -45618.5 q^{71} +4003.90 q^{73} +5742.86 q^{77} -82327.7 q^{79} -7535.39 q^{83} -25159.9 q^{85} -46686.5 q^{89} +13112.9 q^{91} +180208. q^{95} +16776.0 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 98 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 98 q^{7} - 100 q^{11} + 540 q^{13} - 1152 q^{17} + 2944 q^{19} - 2684 q^{23} + 2782 q^{25} - 996 q^{29} + 2616 q^{31} - 3492 q^{37} - 17016 q^{41} + 13640 q^{43} - 11832 q^{47} + 4802 q^{49} - 37548 q^{53} - 9032 q^{55} + 6320 q^{59} + 39764 q^{61} - 72256 q^{65} - 27376 q^{67} - 35460 q^{71} + 64188 q^{73} + 4900 q^{77} - 110088 q^{79} + 5896 q^{83} + 27096 q^{85} - 167160 q^{89} - 26460 q^{91} + 162576 q^{95} - 11876 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 67.2012 1.20213 0.601066 0.799200i \(-0.294743\pi\)
0.601066 + 0.799200i \(0.294743\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −117.201 −0.292045 −0.146023 0.989281i \(-0.546647\pi\)
−0.146023 + 0.989281i \(0.546647\pi\)
\(12\) 0 0
\(13\) −267.610 −0.439181 −0.219590 0.975592i \(-0.570472\pi\)
−0.219590 + 0.975592i \(0.570472\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −374.396 −0.314202 −0.157101 0.987583i \(-0.550215\pi\)
−0.157101 + 0.987583i \(0.550215\pi\)
\(18\) 0 0
\(19\) 2681.62 1.70417 0.852086 0.523402i \(-0.175337\pi\)
0.852086 + 0.523402i \(0.175337\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4634.86 −1.82691 −0.913454 0.406941i \(-0.866595\pi\)
−0.913454 + 0.406941i \(0.866595\pi\)
\(24\) 0 0
\(25\) 1391.00 0.445120
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2514.04 −0.555107 −0.277553 0.960710i \(-0.589524\pi\)
−0.277553 + 0.960710i \(0.589524\pi\)
\(30\) 0 0
\(31\) −2858.47 −0.534232 −0.267116 0.963664i \(-0.586071\pi\)
−0.267116 + 0.963664i \(0.586071\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3292.86 −0.454363
\(36\) 0 0
\(37\) −10078.9 −1.21035 −0.605175 0.796093i \(-0.706897\pi\)
−0.605175 + 0.796093i \(0.706897\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −14085.7 −1.30864 −0.654318 0.756220i \(-0.727044\pi\)
−0.654318 + 0.756220i \(0.727044\pi\)
\(42\) 0 0
\(43\) 14615.3 1.20542 0.602709 0.797961i \(-0.294088\pi\)
0.602709 + 0.797961i \(0.294088\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11153.1 0.736463 0.368232 0.929734i \(-0.379963\pi\)
0.368232 + 0.929734i \(0.379963\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −34902.3 −1.70673 −0.853364 0.521316i \(-0.825441\pi\)
−0.853364 + 0.521316i \(0.825441\pi\)
\(54\) 0 0
\(55\) −7876.06 −0.351077
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 28830.9 1.07827 0.539135 0.842219i \(-0.318751\pi\)
0.539135 + 0.842219i \(0.318751\pi\)
\(60\) 0 0
\(61\) 30231.0 1.04023 0.520113 0.854097i \(-0.325890\pi\)
0.520113 + 0.854097i \(0.325890\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17983.7 −0.527953
\(66\) 0 0
\(67\) 40476.2 1.10157 0.550785 0.834647i \(-0.314328\pi\)
0.550785 + 0.834647i \(0.314328\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −45618.5 −1.07398 −0.536989 0.843589i \(-0.680438\pi\)
−0.536989 + 0.843589i \(0.680438\pi\)
\(72\) 0 0
\(73\) 4003.90 0.0879379 0.0439690 0.999033i \(-0.486000\pi\)
0.0439690 + 0.999033i \(0.486000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5742.86 0.110383
\(78\) 0 0
\(79\) −82327.7 −1.48415 −0.742076 0.670316i \(-0.766158\pi\)
−0.742076 + 0.670316i \(0.766158\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7535.39 −0.120063 −0.0600316 0.998196i \(-0.519120\pi\)
−0.0600316 + 0.998196i \(0.519120\pi\)
\(84\) 0 0
\(85\) −25159.9 −0.377712
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −46686.5 −0.624765 −0.312383 0.949956i \(-0.601127\pi\)
−0.312383 + 0.949956i \(0.601127\pi\)
\(90\) 0 0
\(91\) 13112.9 0.165995
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 180208. 2.04864
\(96\) 0 0
\(97\) 16776.0 0.181034 0.0905168 0.995895i \(-0.471148\pi\)
0.0905168 + 0.995895i \(0.471148\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 47377.8 0.462138 0.231069 0.972937i \(-0.425778\pi\)
0.231069 + 0.972937i \(0.425778\pi\)
\(102\) 0 0
\(103\) −94613.3 −0.878738 −0.439369 0.898307i \(-0.644798\pi\)
−0.439369 + 0.898307i \(0.644798\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 39361.1 0.332359 0.166180 0.986095i \(-0.446857\pi\)
0.166180 + 0.986095i \(0.446857\pi\)
\(108\) 0 0
\(109\) −71562.4 −0.576924 −0.288462 0.957491i \(-0.593144\pi\)
−0.288462 + 0.957491i \(0.593144\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −147347. −1.08554 −0.542771 0.839881i \(-0.682625\pi\)
−0.542771 + 0.839881i \(0.682625\pi\)
\(114\) 0 0
\(115\) −311468. −2.19618
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18345.4 0.118757
\(120\) 0 0
\(121\) −147315. −0.914710
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −116527. −0.667039
\(126\) 0 0
\(127\) 17624.9 0.0969654 0.0484827 0.998824i \(-0.484561\pi\)
0.0484827 + 0.998824i \(0.484561\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −85899.7 −0.437334 −0.218667 0.975800i \(-0.570171\pi\)
−0.218667 + 0.975800i \(0.570171\pi\)
\(132\) 0 0
\(133\) −131399. −0.644117
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −118301. −0.538501 −0.269251 0.963070i \(-0.586776\pi\)
−0.269251 + 0.963070i \(0.586776\pi\)
\(138\) 0 0
\(139\) −356167. −1.56357 −0.781783 0.623551i \(-0.785690\pi\)
−0.781783 + 0.623551i \(0.785690\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 31364.2 0.128261
\(144\) 0 0
\(145\) −168946. −0.667311
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −144959. −0.534907 −0.267454 0.963571i \(-0.586182\pi\)
−0.267454 + 0.963571i \(0.586182\pi\)
\(150\) 0 0
\(151\) −427345. −1.52523 −0.762617 0.646850i \(-0.776086\pi\)
−0.762617 + 0.646850i \(0.776086\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −192093. −0.642217
\(156\) 0 0
\(157\) 343889. 1.11345 0.556724 0.830698i \(-0.312058\pi\)
0.556724 + 0.830698i \(0.312058\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 227108. 0.690507
\(162\) 0 0
\(163\) 38752.9 0.114244 0.0571222 0.998367i \(-0.481808\pi\)
0.0571222 + 0.998367i \(0.481808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 278212. 0.771942 0.385971 0.922511i \(-0.373866\pi\)
0.385971 + 0.922511i \(0.373866\pi\)
\(168\) 0 0
\(169\) −299678. −0.807120
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 193333. 0.491124 0.245562 0.969381i \(-0.421028\pi\)
0.245562 + 0.969381i \(0.421028\pi\)
\(174\) 0 0
\(175\) −68159.0 −0.168240
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22270.9 0.0519523 0.0259761 0.999663i \(-0.491731\pi\)
0.0259761 + 0.999663i \(0.491731\pi\)
\(180\) 0 0
\(181\) −208008. −0.471936 −0.235968 0.971761i \(-0.575826\pi\)
−0.235968 + 0.971761i \(0.575826\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −677317. −1.45500
\(186\) 0 0
\(187\) 43879.7 0.0917613
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −753867. −1.49524 −0.747621 0.664126i \(-0.768804\pi\)
−0.747621 + 0.664126i \(0.768804\pi\)
\(192\) 0 0
\(193\) 59536.9 0.115052 0.0575258 0.998344i \(-0.481679\pi\)
0.0575258 + 0.998344i \(0.481679\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −159066. −0.292020 −0.146010 0.989283i \(-0.546643\pi\)
−0.146010 + 0.989283i \(0.546643\pi\)
\(198\) 0 0
\(199\) 800348. 1.43267 0.716335 0.697757i \(-0.245818\pi\)
0.716335 + 0.697757i \(0.245818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 123188. 0.209811
\(204\) 0 0
\(205\) −946576. −1.57315
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −314289. −0.497696
\(210\) 0 0
\(211\) 812277. 1.25602 0.628012 0.778204i \(-0.283869\pi\)
0.628012 + 0.778204i \(0.283869\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 982168. 1.44907
\(216\) 0 0
\(217\) 140065. 0.201921
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 100192. 0.137992
\(222\) 0 0
\(223\) −14706.2 −0.0198033 −0.00990166 0.999951i \(-0.503152\pi\)
−0.00990166 + 0.999951i \(0.503152\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 847267. 1.09133 0.545665 0.838004i \(-0.316277\pi\)
0.545665 + 0.838004i \(0.316277\pi\)
\(228\) 0 0
\(229\) 460043. 0.579708 0.289854 0.957071i \(-0.406393\pi\)
0.289854 + 0.957071i \(0.406393\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.03965e6 −1.25458 −0.627291 0.778785i \(-0.715836\pi\)
−0.627291 + 0.778785i \(0.715836\pi\)
\(234\) 0 0
\(235\) 749502. 0.885326
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −582709. −0.659868 −0.329934 0.944004i \(-0.607027\pi\)
−0.329934 + 0.944004i \(0.607027\pi\)
\(240\) 0 0
\(241\) −729432. −0.808988 −0.404494 0.914541i \(-0.632552\pi\)
−0.404494 + 0.914541i \(0.632552\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 161350. 0.171733
\(246\) 0 0
\(247\) −717627. −0.748439
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −795585. −0.797081 −0.398540 0.917151i \(-0.630483\pi\)
−0.398540 + 0.917151i \(0.630483\pi\)
\(252\) 0 0
\(253\) 543211. 0.533540
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 965362. 0.911712 0.455856 0.890054i \(-0.349333\pi\)
0.455856 + 0.890054i \(0.349333\pi\)
\(258\) 0 0
\(259\) 493868. 0.457469
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.24337e6 −1.10843 −0.554217 0.832372i \(-0.686982\pi\)
−0.554217 + 0.832372i \(0.686982\pi\)
\(264\) 0 0
\(265\) −2.34548e6 −2.05171
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.83372e6 −1.54509 −0.772544 0.634961i \(-0.781016\pi\)
−0.772544 + 0.634961i \(0.781016\pi\)
\(270\) 0 0
\(271\) −1.22033e6 −1.00938 −0.504688 0.863302i \(-0.668393\pi\)
−0.504688 + 0.863302i \(0.668393\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −163027. −0.129995
\(276\) 0 0
\(277\) 1.24381e6 0.973990 0.486995 0.873405i \(-0.338093\pi\)
0.486995 + 0.873405i \(0.338093\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.40312e6 −1.81555 −0.907776 0.419455i \(-0.862221\pi\)
−0.907776 + 0.419455i \(0.862221\pi\)
\(282\) 0 0
\(283\) 2.28221e6 1.69390 0.846952 0.531670i \(-0.178435\pi\)
0.846952 + 0.531670i \(0.178435\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 690199. 0.494618
\(288\) 0 0
\(289\) −1.27968e6 −0.901277
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 768737. 0.523129 0.261564 0.965186i \(-0.415762\pi\)
0.261564 + 0.965186i \(0.415762\pi\)
\(294\) 0 0
\(295\) 1.93747e6 1.29622
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.24033e6 0.802343
\(300\) 0 0
\(301\) −716152. −0.455605
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.03156e6 1.25049
\(306\) 0 0
\(307\) 2.33067e6 1.41135 0.705674 0.708536i \(-0.250644\pi\)
0.705674 + 0.708536i \(0.250644\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00213e6 1.76007 0.880033 0.474912i \(-0.157520\pi\)
0.880033 + 0.474912i \(0.157520\pi\)
\(312\) 0 0
\(313\) −2.65017e6 −1.52902 −0.764511 0.644611i \(-0.777019\pi\)
−0.764511 + 0.644611i \(0.777019\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.38294e6 0.772957 0.386479 0.922298i \(-0.373691\pi\)
0.386479 + 0.922298i \(0.373691\pi\)
\(318\) 0 0
\(319\) 294648. 0.162116
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.00399e6 −0.535455
\(324\) 0 0
\(325\) −372245. −0.195488
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −546502. −0.278357
\(330\) 0 0
\(331\) 102433. 0.0513891 0.0256945 0.999670i \(-0.491820\pi\)
0.0256945 + 0.999670i \(0.491820\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.72005e6 1.32423
\(336\) 0 0
\(337\) 968896. 0.464732 0.232366 0.972628i \(-0.425353\pi\)
0.232366 + 0.972628i \(0.425353\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 335017. 0.156020
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −681115. −0.303666 −0.151833 0.988406i \(-0.548518\pi\)
−0.151833 + 0.988406i \(0.548518\pi\)
\(348\) 0 0
\(349\) −2.54000e6 −1.11627 −0.558135 0.829750i \(-0.688483\pi\)
−0.558135 + 0.829750i \(0.688483\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.07238e6 0.885183 0.442592 0.896723i \(-0.354059\pi\)
0.442592 + 0.896723i \(0.354059\pi\)
\(354\) 0 0
\(355\) −3.06562e6 −1.29106
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.78554e6 1.55022 0.775108 0.631829i \(-0.217695\pi\)
0.775108 + 0.631829i \(0.217695\pi\)
\(360\) 0 0
\(361\) 4.71499e6 1.90420
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 269067. 0.105713
\(366\) 0 0
\(367\) −4.24909e6 −1.64676 −0.823381 0.567490i \(-0.807915\pi\)
−0.823381 + 0.567490i \(0.807915\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.71021e6 0.645082
\(372\) 0 0
\(373\) 4.02274e6 1.49710 0.748549 0.663080i \(-0.230751\pi\)
0.748549 + 0.663080i \(0.230751\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 672780. 0.243792
\(378\) 0 0
\(379\) 5.21539e6 1.86504 0.932521 0.361116i \(-0.117604\pi\)
0.932521 + 0.361116i \(0.117604\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.81885e6 1.67860 0.839298 0.543672i \(-0.182966\pi\)
0.839298 + 0.543672i \(0.182966\pi\)
\(384\) 0 0
\(385\) 385927. 0.132695
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.56102e6 −1.19316 −0.596582 0.802552i \(-0.703475\pi\)
−0.596582 + 0.802552i \(0.703475\pi\)
\(390\) 0 0
\(391\) 1.73527e6 0.574019
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.53252e6 −1.78414
\(396\) 0 0
\(397\) 4.67478e6 1.48862 0.744312 0.667832i \(-0.232777\pi\)
0.744312 + 0.667832i \(0.232777\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.73495e6 0.538797 0.269399 0.963029i \(-0.413175\pi\)
0.269399 + 0.963029i \(0.413175\pi\)
\(402\) 0 0
\(403\) 764955. 0.234624
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.18126e6 0.353477
\(408\) 0 0
\(409\) 4.42517e6 1.30804 0.654021 0.756477i \(-0.273081\pi\)
0.654021 + 0.756477i \(0.273081\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.41271e6 −0.407548
\(414\) 0 0
\(415\) −506387. −0.144332
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.57342e6 0.994373 0.497187 0.867644i \(-0.334366\pi\)
0.497187 + 0.867644i \(0.334366\pi\)
\(420\) 0 0
\(421\) 4.36682e6 1.20077 0.600386 0.799711i \(-0.295014\pi\)
0.600386 + 0.799711i \(0.295014\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −520785. −0.139858
\(426\) 0 0
\(427\) −1.48132e6 −0.393168
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.62468e6 1.45849 0.729247 0.684250i \(-0.239870\pi\)
0.729247 + 0.684250i \(0.239870\pi\)
\(432\) 0 0
\(433\) 78517.4 0.0201255 0.0100627 0.999949i \(-0.496797\pi\)
0.0100627 + 0.999949i \(0.496797\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.24289e7 −3.11337
\(438\) 0 0
\(439\) −605066. −0.149845 −0.0749223 0.997189i \(-0.523871\pi\)
−0.0749223 + 0.997189i \(0.523871\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.28586e6 −0.795499 −0.397749 0.917494i \(-0.630209\pi\)
−0.397749 + 0.917494i \(0.630209\pi\)
\(444\) 0 0
\(445\) −3.13739e6 −0.751050
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.81460e6 −1.59523 −0.797617 0.603164i \(-0.793906\pi\)
−0.797617 + 0.603164i \(0.793906\pi\)
\(450\) 0 0
\(451\) 1.65086e6 0.382181
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 881200. 0.199547
\(456\) 0 0
\(457\) −4.12929e6 −0.924880 −0.462440 0.886651i \(-0.653026\pi\)
−0.462440 + 0.886651i \(0.653026\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.86347e6 1.72330 0.861652 0.507500i \(-0.169430\pi\)
0.861652 + 0.507500i \(0.169430\pi\)
\(462\) 0 0
\(463\) 1.47332e6 0.319406 0.159703 0.987165i \(-0.448946\pi\)
0.159703 + 0.987165i \(0.448946\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −102489. −0.0217462 −0.0108731 0.999941i \(-0.503461\pi\)
−0.0108731 + 0.999941i \(0.503461\pi\)
\(468\) 0 0
\(469\) −1.98333e6 −0.416355
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.71294e6 −0.352037
\(474\) 0 0
\(475\) 3.73014e6 0.758561
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.03754e6 −0.405758 −0.202879 0.979204i \(-0.565030\pi\)
−0.202879 + 0.979204i \(0.565030\pi\)
\(480\) 0 0
\(481\) 2.69722e6 0.531562
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.12737e6 0.217626
\(486\) 0 0
\(487\) −5.22108e6 −0.997558 −0.498779 0.866729i \(-0.666218\pi\)
−0.498779 + 0.866729i \(0.666218\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 511328. 0.0957185 0.0478592 0.998854i \(-0.484760\pi\)
0.0478592 + 0.998854i \(0.484760\pi\)
\(492\) 0 0
\(493\) 941246. 0.174416
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.23531e6 0.405925
\(498\) 0 0
\(499\) 4.42818e6 0.796111 0.398055 0.917361i \(-0.369685\pi\)
0.398055 + 0.917361i \(0.369685\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.77759e6 −0.489496 −0.244748 0.969587i \(-0.578705\pi\)
−0.244748 + 0.969587i \(0.578705\pi\)
\(504\) 0 0
\(505\) 3.18385e6 0.555551
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.97867e6 −1.70718 −0.853588 0.520949i \(-0.825578\pi\)
−0.853588 + 0.520949i \(0.825578\pi\)
\(510\) 0 0
\(511\) −196191. −0.0332374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.35813e6 −1.05636
\(516\) 0 0
\(517\) −1.30716e6 −0.215081
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.35311e6 0.541195 0.270597 0.962693i \(-0.412779\pi\)
0.270597 + 0.962693i \(0.412779\pi\)
\(522\) 0 0
\(523\) −4.25132e6 −0.679625 −0.339812 0.940493i \(-0.610364\pi\)
−0.339812 + 0.940493i \(0.610364\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.07020e6 0.167857
\(528\) 0 0
\(529\) 1.50456e7 2.33760
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.76947e6 0.574727
\(534\) 0 0
\(535\) 2.64511e6 0.399540
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −281400. −0.0417208
\(540\) 0 0
\(541\) −1.30343e7 −1.91467 −0.957336 0.288977i \(-0.906685\pi\)
−0.957336 + 0.288977i \(0.906685\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.80908e6 −0.693538
\(546\) 0 0
\(547\) 8.59959e6 1.22888 0.614440 0.788963i \(-0.289382\pi\)
0.614440 + 0.788963i \(0.289382\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.74169e6 −0.945997
\(552\) 0 0
\(553\) 4.03406e6 0.560956
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.89818e6 0.532383 0.266192 0.963920i \(-0.414235\pi\)
0.266192 + 0.963920i \(0.414235\pi\)
\(558\) 0 0
\(559\) −3.91120e6 −0.529396
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.70888e6 0.626104 0.313052 0.949736i \(-0.398649\pi\)
0.313052 + 0.949736i \(0.398649\pi\)
\(564\) 0 0
\(565\) −9.90192e6 −1.30496
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.47706e7 1.91257 0.956285 0.292435i \(-0.0944656\pi\)
0.956285 + 0.292435i \(0.0944656\pi\)
\(570\) 0 0
\(571\) −1.00682e7 −1.29229 −0.646145 0.763214i \(-0.723620\pi\)
−0.646145 + 0.763214i \(0.723620\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.44709e6 −0.813194
\(576\) 0 0
\(577\) −1.49919e7 −1.87464 −0.937318 0.348475i \(-0.886700\pi\)
−0.937318 + 0.348475i \(0.886700\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 369234. 0.0453797
\(582\) 0 0
\(583\) 4.09059e6 0.498442
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.41615e6 0.409205 0.204603 0.978845i \(-0.434410\pi\)
0.204603 + 0.978845i \(0.434410\pi\)
\(588\) 0 0
\(589\) −7.66534e6 −0.910423
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 84972.3 0.00992294 0.00496147 0.999988i \(-0.498421\pi\)
0.00496147 + 0.999988i \(0.498421\pi\)
\(594\) 0 0
\(595\) 1.23283e6 0.142762
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.17468e7 1.33768 0.668838 0.743408i \(-0.266792\pi\)
0.668838 + 0.743408i \(0.266792\pi\)
\(600\) 0 0
\(601\) 4.79610e6 0.541629 0.270815 0.962632i \(-0.412707\pi\)
0.270815 + 0.962632i \(0.412707\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.89974e6 −1.09960
\(606\) 0 0
\(607\) −3.53150e6 −0.389034 −0.194517 0.980899i \(-0.562314\pi\)
−0.194517 + 0.980899i \(0.562314\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.98468e6 −0.323440
\(612\) 0 0
\(613\) 3.78238e6 0.406550 0.203275 0.979122i \(-0.434842\pi\)
0.203275 + 0.979122i \(0.434842\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.18399e7 1.25209 0.626046 0.779786i \(-0.284672\pi\)
0.626046 + 0.779786i \(0.284672\pi\)
\(618\) 0 0
\(619\) −1.68015e7 −1.76247 −0.881237 0.472675i \(-0.843288\pi\)
−0.881237 + 0.472675i \(0.843288\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.28764e6 0.236139
\(624\) 0 0
\(625\) −1.21776e7 −1.24699
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.77352e6 0.380295
\(630\) 0 0
\(631\) −1.23029e6 −0.123008 −0.0615042 0.998107i \(-0.519590\pi\)
−0.0615042 + 0.998107i \(0.519590\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.18441e6 0.116565
\(636\) 0 0
\(637\) −642530. −0.0627401
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.36169e6 −0.227027 −0.113514 0.993536i \(-0.536211\pi\)
−0.113514 + 0.993536i \(0.536211\pi\)
\(642\) 0 0
\(643\) 1.25756e6 0.119950 0.0599750 0.998200i \(-0.480898\pi\)
0.0599750 + 0.998200i \(0.480898\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.45141e6 −0.605890 −0.302945 0.953008i \(-0.597970\pi\)
−0.302945 + 0.953008i \(0.597970\pi\)
\(648\) 0 0
\(649\) −3.37901e6 −0.314904
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.84525e7 1.69345 0.846726 0.532029i \(-0.178570\pi\)
0.846726 + 0.532029i \(0.178570\pi\)
\(654\) 0 0
\(655\) −5.77256e6 −0.525733
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.98016e6 0.357015 0.178508 0.983939i \(-0.442873\pi\)
0.178508 + 0.983939i \(0.442873\pi\)
\(660\) 0 0
\(661\) −1.93255e7 −1.72039 −0.860195 0.509965i \(-0.829658\pi\)
−0.860195 + 0.509965i \(0.829658\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.83020e6 −0.774313
\(666\) 0 0
\(667\) 1.16522e7 1.01413
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.54311e6 −0.303793
\(672\) 0 0
\(673\) 5.72688e6 0.487394 0.243697 0.969851i \(-0.421640\pi\)
0.243697 + 0.969851i \(0.421640\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −105639. −0.00885831 −0.00442915 0.999990i \(-0.501410\pi\)
−0.00442915 + 0.999990i \(0.501410\pi\)
\(678\) 0 0
\(679\) −822024. −0.0684243
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.96129e7 −1.60875 −0.804377 0.594119i \(-0.797501\pi\)
−0.804377 + 0.594119i \(0.797501\pi\)
\(684\) 0 0
\(685\) −7.94997e6 −0.647350
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.34018e6 0.749562
\(690\) 0 0
\(691\) −7.94444e6 −0.632949 −0.316474 0.948601i \(-0.602499\pi\)
−0.316474 + 0.948601i \(0.602499\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.39348e7 −1.87961
\(696\) 0 0
\(697\) 5.27364e6 0.411176
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.62349e6 −0.124783 −0.0623914 0.998052i \(-0.519873\pi\)
−0.0623914 + 0.998052i \(0.519873\pi\)
\(702\) 0 0
\(703\) −2.70279e7 −2.06264
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.32151e6 −0.174672
\(708\) 0 0
\(709\) −1.62774e6 −0.121610 −0.0608051 0.998150i \(-0.519367\pi\)
−0.0608051 + 0.998150i \(0.519367\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.32486e7 0.975993
\(714\) 0 0
\(715\) 2.10771e6 0.154186
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.91335e6 −0.643012 −0.321506 0.946908i \(-0.604189\pi\)
−0.321506 + 0.946908i \(0.604189\pi\)
\(720\) 0 0
\(721\) 4.63605e6 0.332132
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.49702e6 −0.247089
\(726\) 0 0
\(727\) 1.16823e7 0.819773 0.409886 0.912137i \(-0.365568\pi\)
0.409886 + 0.912137i \(0.365568\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.47193e6 −0.378745
\(732\) 0 0
\(733\) 5.24074e6 0.360274 0.180137 0.983642i \(-0.442346\pi\)
0.180137 + 0.983642i \(0.442346\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.74385e6 −0.321709
\(738\) 0 0
\(739\) −2.78382e6 −0.187513 −0.0937564 0.995595i \(-0.529887\pi\)
−0.0937564 + 0.995595i \(0.529887\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.59091e6 0.570909 0.285455 0.958392i \(-0.407855\pi\)
0.285455 + 0.958392i \(0.407855\pi\)
\(744\) 0 0
\(745\) −9.74139e6 −0.643029
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.92869e6 −0.125620
\(750\) 0 0
\(751\) −1.13278e7 −0.732905 −0.366452 0.930437i \(-0.619428\pi\)
−0.366452 + 0.930437i \(0.619428\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.87181e7 −1.83353
\(756\) 0 0
\(757\) −7.45021e6 −0.472529 −0.236265 0.971689i \(-0.575923\pi\)
−0.236265 + 0.971689i \(0.575923\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.67264e7 1.04698 0.523492 0.852031i \(-0.324629\pi\)
0.523492 + 0.852031i \(0.324629\pi\)
\(762\) 0 0
\(763\) 3.50656e6 0.218057
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.71541e6 −0.473555
\(768\) 0 0
\(769\) 2.52349e7 1.53881 0.769407 0.638759i \(-0.220552\pi\)
0.769407 + 0.638759i \(0.220552\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.74123e7 −1.65005 −0.825025 0.565097i \(-0.808839\pi\)
−0.825025 + 0.565097i \(0.808839\pi\)
\(774\) 0 0
\(775\) −3.97614e6 −0.237797
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.77725e7 −2.23014
\(780\) 0 0
\(781\) 5.34654e6 0.313650
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.31098e7 1.33851
\(786\) 0 0
\(787\) −1.24214e7 −0.714880 −0.357440 0.933936i \(-0.616350\pi\)
−0.357440 + 0.933936i \(0.616350\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.22002e6 0.410296
\(792\) 0 0
\(793\) −8.09010e6 −0.456847
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.08301e7 −0.603929 −0.301965 0.953319i \(-0.597642\pi\)
−0.301965 + 0.953319i \(0.597642\pi\)
\(798\) 0 0
\(799\) −4.17568e6 −0.231398
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −469262. −0.0256819
\(804\) 0 0
\(805\) 1.52619e7 0.830080
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.18990e7 1.17639 0.588196 0.808718i \(-0.299838\pi\)
0.588196 + 0.808718i \(0.299838\pi\)
\(810\) 0 0
\(811\) 8.37206e6 0.446972 0.223486 0.974707i \(-0.428256\pi\)
0.223486 + 0.974707i \(0.428256\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.60424e6 0.137337
\(816\) 0 0
\(817\) 3.91928e7 2.05424
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.88483e7 −0.975918 −0.487959 0.872866i \(-0.662258\pi\)
−0.487959 + 0.872866i \(0.662258\pi\)
\(822\) 0 0
\(823\) 2.87140e7 1.47773 0.738864 0.673855i \(-0.235363\pi\)
0.738864 + 0.673855i \(0.235363\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.72989e7 0.879537 0.439769 0.898111i \(-0.355060\pi\)
0.439769 + 0.898111i \(0.355060\pi\)
\(828\) 0 0
\(829\) 3.48523e7 1.76135 0.880675 0.473721i \(-0.157090\pi\)
0.880675 + 0.473721i \(0.157090\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −898926. −0.0448860
\(834\) 0 0
\(835\) 1.86962e7 0.927976
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.81074e7 −0.888080 −0.444040 0.896007i \(-0.646455\pi\)
−0.444040 + 0.896007i \(0.646455\pi\)
\(840\) 0 0
\(841\) −1.41908e7 −0.691857
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.01387e7 −0.970265
\(846\) 0 0
\(847\) 7.21843e6 0.345728
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.67145e7 2.21120
\(852\) 0 0
\(853\) −9.76976e6 −0.459739 −0.229870 0.973221i \(-0.573830\pi\)
−0.229870 + 0.973221i \(0.573830\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.45112e6 0.207022 0.103511 0.994628i \(-0.466992\pi\)
0.103511 + 0.994628i \(0.466992\pi\)
\(858\) 0 0
\(859\) −3.74490e7 −1.73164 −0.865820 0.500356i \(-0.833202\pi\)
−0.865820 + 0.500356i \(0.833202\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.92400e7 −0.879384 −0.439692 0.898149i \(-0.644912\pi\)
−0.439692 + 0.898149i \(0.644912\pi\)
\(864\) 0 0
\(865\) 1.29922e7 0.590395
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.64890e6 0.433439
\(870\) 0 0
\(871\) −1.08318e7 −0.483788
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.70982e6 0.252117
\(876\) 0 0
\(877\) −9.26947e6 −0.406964 −0.203482 0.979079i \(-0.565226\pi\)
−0.203482 + 0.979079i \(0.565226\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.31518e7 1.43902 0.719510 0.694482i \(-0.244366\pi\)
0.719510 + 0.694482i \(0.244366\pi\)
\(882\) 0 0
\(883\) −2.29544e7 −0.990751 −0.495375 0.868679i \(-0.664969\pi\)
−0.495375 + 0.868679i \(0.664969\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.99207e6 −0.127692 −0.0638459 0.997960i \(-0.520337\pi\)
−0.0638459 + 0.997960i \(0.520337\pi\)
\(888\) 0 0
\(889\) −863619. −0.0366495
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.99084e7 1.25506
\(894\) 0 0
\(895\) 1.49663e6 0.0624535
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.18631e6 0.296556
\(900\) 0 0
\(901\) 1.30673e7 0.536258
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.39784e7 −0.567329
\(906\) 0 0
\(907\) 2.98331e7 1.20415 0.602075 0.798439i \(-0.294341\pi\)
0.602075 + 0.798439i \(0.294341\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.49263e6 0.139430 0.0697150 0.997567i \(-0.477791\pi\)
0.0697150 + 0.997567i \(0.477791\pi\)
\(912\) 0 0
\(913\) 883156. 0.0350639
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.20908e6 0.165297
\(918\) 0 0
\(919\) −1.83584e7 −0.717045 −0.358523 0.933521i \(-0.616719\pi\)
−0.358523 + 0.933521i \(0.616719\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.22079e7 0.471670
\(924\) 0 0
\(925\) −1.40198e7 −0.538751
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.58149e7 −1.36152 −0.680760 0.732506i \(-0.738350\pi\)
−0.680760 + 0.732506i \(0.738350\pi\)
\(930\) 0 0
\(931\) 6.43857e6 0.243453
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.94877e6 0.110309
\(936\) 0 0
\(937\) 1.66372e7 0.619057 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.78598e7 1.39381 0.696905 0.717163i \(-0.254560\pi\)
0.696905 + 0.717163i \(0.254560\pi\)
\(942\) 0 0
\(943\) 6.52852e7 2.39076
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.17041e7 0.786441 0.393221 0.919444i \(-0.371361\pi\)
0.393221 + 0.919444i \(0.371361\pi\)
\(948\) 0 0
\(949\) −1.07148e6 −0.0386206
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.43716e7 0.869265 0.434632 0.900608i \(-0.356878\pi\)
0.434632 + 0.900608i \(0.356878\pi\)
\(954\) 0 0
\(955\) −5.06608e7 −1.79748
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.79675e6 0.203534
\(960\) 0 0
\(961\) −2.04583e7 −0.714596
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.00095e6 0.138307
\(966\) 0 0
\(967\) 4.39697e7 1.51213 0.756063 0.654499i \(-0.227121\pi\)
0.756063 + 0.654499i \(0.227121\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.36883e7 1.14665 0.573325 0.819328i \(-0.305653\pi\)
0.573325 + 0.819328i \(0.305653\pi\)
\(972\) 0 0
\(973\) 1.74522e7 0.590972
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.00132e6 0.100595 0.0502974 0.998734i \(-0.483983\pi\)
0.0502974 + 0.998734i \(0.483983\pi\)
\(978\) 0 0
\(979\) 5.47172e6 0.182460
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.00031e7 0.660257 0.330128 0.943936i \(-0.392908\pi\)
0.330128 + 0.943936i \(0.392908\pi\)
\(984\) 0 0
\(985\) −1.06894e7 −0.351046
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.77400e7 −2.20219
\(990\) 0 0
\(991\) −8.92502e6 −0.288686 −0.144343 0.989528i \(-0.546107\pi\)
−0.144343 + 0.989528i \(0.546107\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.37843e7 1.72226
\(996\) 0 0
\(997\) 6.12645e6 0.195196 0.0975979 0.995226i \(-0.468884\pi\)
0.0975979 + 0.995226i \(0.468884\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.6.a.o.1.2 2
3.2 odd 2 168.6.a.j.1.1 2
4.3 odd 2 1008.6.a.bn.1.2 2
12.11 even 2 336.6.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.6.a.j.1.1 2 3.2 odd 2
336.6.a.t.1.1 2 12.11 even 2
504.6.a.o.1.2 2 1.1 even 1 trivial
1008.6.a.bn.1.2 2 4.3 odd 2