Properties

Label 504.6.a.i
Level $504$
Weight $6$
Character orbit 504.a
Self dual yes
Analytic conductor $80.833$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.8334451857\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{345}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 86 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{345}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 41) q^{5} - 49 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 41) q^{5} - 49 q^{7} + ( - 2 \beta - 170) q^{11} + ( - 13 \beta + 455) q^{13} + ( - 2 \beta - 1608) q^{17} + ( - 15 \beta - 337) q^{19} + ( - 24 \beta + 552) q^{23} + (82 \beta + 1661) q^{25} + ( - 38 \beta - 4032) q^{29} + ( - 70 \beta - 3106) q^{31} + (49 \beta + 2009) q^{35} + ( - 130 \beta - 4256) q^{37} + (226 \beta + 652) q^{41} + ( - 266 \beta - 5002) q^{43} + ( - 238 \beta + 6374) q^{47} + 2401 q^{49} + ( - 256 \beta + 5610) q^{53} + (252 \beta + 13180) q^{55} + (751 \beta + 6009) q^{59} + (25 \beta + 51369) q^{61} + (78 \beta + 21710) q^{65} + ( - 648 \beta + 12068) q^{67} + (580 \beta - 44860) q^{71} + (572 \beta - 27794) q^{73} + (98 \beta + 8330) q^{77} + ( - 652 \beta + 24412) q^{79} + ( - 1149 \beta - 17891) q^{83} + (1690 \beta + 72138) q^{85} + (1576 \beta + 9150) q^{89} + (637 \beta - 22295) q^{91} + (952 \beta + 60392) q^{95} + (154 \beta - 34992) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 82 q^{5} - 98 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 82 q^{5} - 98 q^{7} - 340 q^{11} + 910 q^{13} - 3216 q^{17} - 674 q^{19} + 1104 q^{23} + 3322 q^{25} - 8064 q^{29} - 6212 q^{31} + 4018 q^{35} - 8512 q^{37} + 1304 q^{41} - 10004 q^{43} + 12748 q^{47} + 4802 q^{49} + 11220 q^{53} + 26360 q^{55} + 12018 q^{59} + 102738 q^{61} + 43420 q^{65} + 24136 q^{67} - 89720 q^{71} - 55588 q^{73} + 16660 q^{77} + 48824 q^{79} - 35782 q^{83} + 144276 q^{85} + 18300 q^{89} - 44590 q^{91} + 120784 q^{95} - 69984 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.78709
−8.78709
0 0 0 −96.7225 0 −49.0000 0 0 0
1.2 0 0 0 14.7225 0 −49.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.6.a.i 2
3.b odd 2 1 56.6.a.e 2
4.b odd 2 1 1008.6.a.bd 2
12.b even 2 1 112.6.a.i 2
21.c even 2 1 392.6.a.d 2
21.g even 6 2 392.6.i.i 4
21.h odd 6 2 392.6.i.j 4
24.f even 2 1 448.6.a.t 2
24.h odd 2 1 448.6.a.v 2
84.h odd 2 1 784.6.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.6.a.e 2 3.b odd 2 1
112.6.a.i 2 12.b even 2 1
392.6.a.d 2 21.c even 2 1
392.6.i.i 4 21.g even 6 2
392.6.i.j 4 21.h odd 6 2
448.6.a.t 2 24.f even 2 1
448.6.a.v 2 24.h odd 2 1
504.6.a.i 2 1.a even 1 1 trivial
784.6.a.u 2 84.h odd 2 1
1008.6.a.bd 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(504))\):

\( T_{5}^{2} + 82T_{5} - 1424 \) Copy content Toggle raw display
\( T_{11}^{2} + 340T_{11} + 16480 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 82T - 1424 \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 340T + 16480 \) Copy content Toggle raw display
$13$ \( T^{2} - 910T - 317720 \) Copy content Toggle raw display
$17$ \( T^{2} + 3216 T + 2573244 \) Copy content Toggle raw display
$19$ \( T^{2} + 674T - 585056 \) Copy content Toggle raw display
$23$ \( T^{2} - 1104 T - 1483776 \) Copy content Toggle raw display
$29$ \( T^{2} + 8064 T + 11773404 \) Copy content Toggle raw display
$31$ \( T^{2} + 6212 T - 5567264 \) Copy content Toggle raw display
$37$ \( T^{2} + 8512 T - 34360964 \) Copy content Toggle raw display
$41$ \( T^{2} - 1304 T - 158165876 \) Copy content Toggle raw display
$43$ \( T^{2} + 10004 T - 194677376 \) Copy content Toggle raw display
$47$ \( T^{2} - 12748 T - 135251744 \) Copy content Toggle raw display
$53$ \( T^{2} - 11220 T - 172017180 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1715115024 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2636833536 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1158165296 \) Copy content Toggle raw display
$71$ \( T^{2} + 89720 T + 967897600 \) Copy content Toggle raw display
$73$ \( T^{2} + 55588 T - 243399884 \) Copy content Toggle raw display
$79$ \( T^{2} - 48824 T - 724002176 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3779136224 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 7628401980 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1150801884 \) Copy content Toggle raw display
show more
show less