Properties

Label 504.6.a
Level $504$
Weight $6$
Character orbit 504.a
Rep. character $\chi_{504}(1,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $23$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(504))\).

Total New Old
Modular forms 496 38 458
Cusp forms 464 38 426
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(5\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(18\)
Minus space\(-\)\(20\)

Trace form

\( 38 q + 98 q^{5} + O(q^{10}) \) \( 38 q + 98 q^{5} + 268 q^{11} - 382 q^{13} - 688 q^{17} + 894 q^{19} + 3712 q^{23} + 28534 q^{25} - 12944 q^{29} - 9204 q^{31} + 7350 q^{35} + 12592 q^{37} - 17448 q^{41} - 22796 q^{43} + 34908 q^{47} + 91238 q^{49} - 79028 q^{53} + 30232 q^{55} + 78498 q^{59} - 4130 q^{61} - 22324 q^{65} - 91936 q^{67} - 107824 q^{71} - 47020 q^{73} - 23716 q^{77} + 53720 q^{79} - 19430 q^{83} + 33356 q^{85} + 276500 q^{89} - 22442 q^{91} - 249768 q^{95} + 4768 q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(504))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
504.6.a.a 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.c \(0\) \(0\) \(-74\) \(49\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-74q^{5}+7^{2}q^{7}-6^{3}q^{11}-186q^{13}+\cdots\)
504.6.a.b 504.a 1.a $1$ $80.833$ \(\Q\) None 56.6.a.b \(0\) \(0\) \(-32\) \(49\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{5}+7^{2}q^{7}+624q^{11}-708q^{13}+\cdots\)
504.6.a.c 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.f \(0\) \(0\) \(-14\) \(-49\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-14q^{5}-7^{2}q^{7}+700q^{11}+158q^{13}+\cdots\)
504.6.a.d 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.b \(0\) \(0\) \(-4\) \(-49\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}-7^{2}q^{7}-370q^{11}+122q^{13}+\cdots\)
504.6.a.e 504.a 1.a $1$ $80.833$ \(\Q\) None 56.6.a.a \(0\) \(0\) \(-4\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+7^{2}q^{7}+240q^{11}-744q^{13}+\cdots\)
504.6.a.f 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.a \(0\) \(0\) \(34\) \(49\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+34q^{5}+7^{2}q^{7}+756q^{11}+678q^{13}+\cdots\)
504.6.a.g 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.e \(0\) \(0\) \(38\) \(-49\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+38q^{5}-7^{2}q^{7}-600q^{11}-674q^{13}+\cdots\)
504.6.a.h 504.a 1.a $1$ $80.833$ \(\Q\) None 168.6.a.d \(0\) \(0\) \(64\) \(49\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{6}q^{5}+7^{2}q^{7}+54q^{11}+738q^{13}+\cdots\)
504.6.a.i 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{345}) \) None 56.6.a.e \(0\) \(0\) \(-82\) \(-98\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-41-\beta )q^{5}-7^{2}q^{7}+(-170-2\beta )q^{11}+\cdots\)
504.6.a.j 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{429}) \) None 504.6.a.j \(0\) \(0\) \(-80\) \(98\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-40-\beta )q^{5}+7^{2}q^{7}+(-6^{3}-3\beta )q^{11}+\cdots\)
504.6.a.k 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{106}) \) None 504.6.a.k \(0\) \(0\) \(-76\) \(98\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-38+\beta )q^{5}+7^{2}q^{7}+(-282-5\beta )q^{11}+\cdots\)
504.6.a.l 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{37}) \) None 504.6.a.l \(0\) \(0\) \(-48\) \(-98\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-24-5\beta )q^{5}-7^{2}q^{7}+(-184+\cdots)q^{11}+\cdots\)
504.6.a.m 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{193}) \) None 56.6.a.d \(0\) \(0\) \(-42\) \(-98\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-21-5\beta )q^{5}-7^{2}q^{7}+(358+14\beta )q^{11}+\cdots\)
504.6.a.n 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{114}) \) None 504.6.a.n \(0\) \(0\) \(-28\) \(-98\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-14+\beta )q^{5}-7^{2}q^{7}+(298-7\beta )q^{11}+\cdots\)
504.6.a.o 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{1129}) \) None 168.6.a.j \(0\) \(0\) \(0\) \(-98\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}-7^{2}q^{7}+(-50+\beta )q^{11}+(270+\cdots)q^{13}+\cdots\)
504.6.a.p 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{4281}) \) None 168.6.a.i \(0\) \(0\) \(10\) \(98\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{5}+7^{2}q^{7}+(-3^{3}-3\beta )q^{11}+\cdots\)
504.6.a.q 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{114}) \) None 504.6.a.n \(0\) \(0\) \(28\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(14+\beta )q^{5}-7^{2}q^{7}+(-298-7\beta )q^{11}+\cdots\)
504.6.a.r 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{37}) \) None 504.6.a.l \(0\) \(0\) \(48\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(24+5\beta )q^{5}-7^{2}q^{7}+(184+37\beta )q^{11}+\cdots\)
504.6.a.s 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{177}) \) None 56.6.a.c \(0\) \(0\) \(62\) \(98\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(31-5\beta )q^{5}+7^{2}q^{7}+(-486-6\beta )q^{11}+\cdots\)
504.6.a.t 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{249}) \) None 168.6.a.h \(0\) \(0\) \(64\) \(98\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(2^{5}-\beta )q^{5}+7^{2}q^{7}+(-270+15\beta )q^{11}+\cdots\)
504.6.a.u 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{106}) \) None 504.6.a.k \(0\) \(0\) \(76\) \(98\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(38+\beta )q^{5}+7^{2}q^{7}+(282-5\beta )q^{11}+\cdots\)
504.6.a.v 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{193}) \) None 168.6.a.g \(0\) \(0\) \(78\) \(-98\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(39-5\beta )q^{5}-7^{2}q^{7}+(185-37\beta )q^{11}+\cdots\)
504.6.a.w 504.a 1.a $2$ $80.833$ \(\Q(\sqrt{429}) \) None 504.6.a.j \(0\) \(0\) \(80\) \(98\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(40-\beta )q^{5}+7^{2}q^{7}+(6^{3}-3\beta )q^{11}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(504))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(504)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(252))\)\(^{\oplus 2}\)