Properties

Label 504.4.bl.a.17.8
Level $504$
Weight $4$
Character 504.17
Analytic conductor $29.737$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 504.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(29.7369626429\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 504.17
Dual form 504.4.bl.a.89.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.34783 - 5.79860i) q^{5} +(-12.7404 + 13.4418i) q^{7} +O(q^{10})\) \(q+(-3.34783 - 5.79860i) q^{5} +(-12.7404 + 13.4418i) q^{7} +(28.2958 + 16.3366i) q^{11} -67.9019i q^{13} +(-15.3179 + 26.5313i) q^{17} +(-21.8820 + 12.6336i) q^{19} +(-68.6216 + 39.6187i) q^{23} +(40.0841 - 69.4277i) q^{25} +109.668i q^{29} +(238.527 + 137.714i) q^{31} +(120.596 + 28.8753i) q^{35} +(160.221 + 277.511i) q^{37} -184.846 q^{41} +364.766 q^{43} +(25.7730 + 44.6402i) q^{47} +(-18.3666 - 342.508i) q^{49} +(532.671 + 307.538i) q^{53} -218.769i q^{55} +(207.843 - 359.995i) q^{59} +(411.761 - 237.730i) q^{61} +(-393.736 + 227.324i) q^{65} +(142.188 - 246.277i) q^{67} +965.404i q^{71} +(225.387 + 130.127i) q^{73} +(-580.093 + 172.214i) q^{77} +(219.163 + 379.602i) q^{79} +76.4726 q^{83} +205.126 q^{85} +(356.559 + 617.579i) q^{89} +(912.728 + 865.095i) q^{91} +(146.514 + 84.5900i) q^{95} -410.607i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 24q^{7} + O(q^{10}) \) \( 48q - 24q^{7} + 540q^{19} - 924q^{25} + 648q^{31} - 132q^{37} - 792q^{43} + 672q^{49} - 12q^{67} + 2412q^{73} + 1680q^{79} + 480q^{85} + 1404q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.34783 5.79860i −0.299439 0.518643i 0.676569 0.736379i \(-0.263466\pi\)
−0.976008 + 0.217736i \(0.930133\pi\)
\(6\) 0 0
\(7\) −12.7404 + 13.4418i −0.687915 + 0.725792i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 28.2958 + 16.3366i 0.775593 + 0.447789i 0.834866 0.550453i \(-0.185545\pi\)
−0.0592734 + 0.998242i \(0.518878\pi\)
\(12\) 0 0
\(13\) 67.9019i 1.44866i −0.689452 0.724331i \(-0.742149\pi\)
0.689452 0.724331i \(-0.257851\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.3179 + 26.5313i −0.218537 + 0.378517i −0.954361 0.298656i \(-0.903462\pi\)
0.735824 + 0.677173i \(0.236795\pi\)
\(18\) 0 0
\(19\) −21.8820 + 12.6336i −0.264215 + 0.152544i −0.626256 0.779618i \(-0.715413\pi\)
0.362041 + 0.932162i \(0.382080\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −68.6216 + 39.6187i −0.622113 + 0.359177i −0.777691 0.628647i \(-0.783609\pi\)
0.155578 + 0.987824i \(0.450276\pi\)
\(24\) 0 0
\(25\) 40.0841 69.4277i 0.320673 0.555422i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 109.668i 0.702236i 0.936331 + 0.351118i \(0.114198\pi\)
−0.936331 + 0.351118i \(0.885802\pi\)
\(30\) 0 0
\(31\) 238.527 + 137.714i 1.38196 + 0.797875i 0.992391 0.123123i \(-0.0392910\pi\)
0.389568 + 0.920998i \(0.372624\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 120.596 + 28.8753i 0.582415 + 0.139452i
\(36\) 0 0
\(37\) 160.221 + 277.511i 0.711898 + 1.23304i 0.964144 + 0.265380i \(0.0854975\pi\)
−0.252246 + 0.967663i \(0.581169\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −184.846 −0.704100 −0.352050 0.935981i \(-0.614515\pi\)
−0.352050 + 0.935981i \(0.614515\pi\)
\(42\) 0 0
\(43\) 364.766 1.29363 0.646817 0.762645i \(-0.276100\pi\)
0.646817 + 0.762645i \(0.276100\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 25.7730 + 44.6402i 0.0799868 + 0.138541i 0.903244 0.429127i \(-0.141179\pi\)
−0.823257 + 0.567669i \(0.807846\pi\)
\(48\) 0 0
\(49\) −18.3666 342.508i −0.0535471 0.998565i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 532.671 + 307.538i 1.38053 + 0.797048i 0.992222 0.124483i \(-0.0397271\pi\)
0.388306 + 0.921531i \(0.373060\pi\)
\(54\) 0 0
\(55\) 218.769i 0.536341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 207.843 359.995i 0.458625 0.794362i −0.540263 0.841496i \(-0.681675\pi\)
0.998889 + 0.0471340i \(0.0150088\pi\)
\(60\) 0 0
\(61\) 411.761 237.730i 0.864271 0.498987i −0.00116918 0.999999i \(-0.500372\pi\)
0.865440 + 0.501012i \(0.167039\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −393.736 + 227.324i −0.751338 + 0.433785i
\(66\) 0 0
\(67\) 142.188 246.277i 0.259269 0.449068i −0.706777 0.707436i \(-0.749852\pi\)
0.966046 + 0.258369i \(0.0831849\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 965.404i 1.61370i 0.590759 + 0.806848i \(0.298828\pi\)
−0.590759 + 0.806848i \(0.701172\pi\)
\(72\) 0 0
\(73\) 225.387 + 130.127i 0.361364 + 0.208633i 0.669679 0.742651i \(-0.266432\pi\)
−0.308315 + 0.951284i \(0.599765\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −580.093 + 172.214i −0.858543 + 0.254878i
\(78\) 0 0
\(79\) 219.163 + 379.602i 0.312124 + 0.540615i 0.978822 0.204713i \(-0.0656262\pi\)
−0.666698 + 0.745328i \(0.732293\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 76.4726 0.101132 0.0505660 0.998721i \(-0.483897\pi\)
0.0505660 + 0.998721i \(0.483897\pi\)
\(84\) 0 0
\(85\) 205.126 0.261753
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 356.559 + 617.579i 0.424665 + 0.735542i 0.996389 0.0849045i \(-0.0270585\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(90\) 0 0
\(91\) 912.728 + 865.095i 1.05143 + 0.996556i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 146.514 + 84.5900i 0.158232 + 0.0913553i
\(96\) 0 0
\(97\) 410.607i 0.429803i −0.976636 0.214901i \(-0.931057\pi\)
0.976636 0.214901i \(-0.0689430\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −953.656 + 1651.78i −0.939527 + 1.62731i −0.173173 + 0.984891i \(0.555402\pi\)
−0.766355 + 0.642418i \(0.777931\pi\)
\(102\) 0 0
\(103\) 1177.37 679.756i 1.12631 0.650276i 0.183306 0.983056i \(-0.441320\pi\)
0.943004 + 0.332780i \(0.107987\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1555.77 898.226i 1.40563 0.811540i 0.410666 0.911786i \(-0.365296\pi\)
0.994963 + 0.100246i \(0.0319629\pi\)
\(108\) 0 0
\(109\) 42.0727 72.8720i 0.0369709 0.0640355i −0.846948 0.531676i \(-0.821562\pi\)
0.883919 + 0.467640i \(0.154896\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 117.441i 0.0977688i 0.998804 + 0.0488844i \(0.0155666\pi\)
−0.998804 + 0.0488844i \(0.984433\pi\)
\(114\) 0 0
\(115\) 459.466 + 265.273i 0.372569 + 0.215103i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −161.475 543.918i −0.124390 0.418999i
\(120\) 0 0
\(121\) −131.730 228.163i −0.0989707 0.171422i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1373.74 −0.982965
\(126\) 0 0
\(127\) −510.925 −0.356986 −0.178493 0.983941i \(-0.557122\pi\)
−0.178493 + 0.983941i \(0.557122\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 991.274 + 1716.94i 0.661130 + 1.14511i 0.980319 + 0.197419i \(0.0632560\pi\)
−0.319189 + 0.947691i \(0.603411\pi\)
\(132\) 0 0
\(133\) 108.966 455.091i 0.0710416 0.296702i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −857.943 495.334i −0.535029 0.308899i 0.208033 0.978122i \(-0.433294\pi\)
−0.743062 + 0.669223i \(0.766627\pi\)
\(138\) 0 0
\(139\) 369.921i 0.225729i 0.993610 + 0.112864i \(0.0360026\pi\)
−0.993610 + 0.112864i \(0.963997\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1109.29 1921.34i 0.648694 1.12357i
\(144\) 0 0
\(145\) 635.922 367.149i 0.364210 0.210277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1054.73 + 608.947i −0.579910 + 0.334811i −0.761098 0.648637i \(-0.775339\pi\)
0.181188 + 0.983449i \(0.442006\pi\)
\(150\) 0 0
\(151\) −764.206 + 1323.64i −0.411856 + 0.713355i −0.995093 0.0989470i \(-0.968453\pi\)
0.583237 + 0.812302i \(0.301786\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1844.17i 0.955658i
\(156\) 0 0
\(157\) −2610.74 1507.31i −1.32713 0.766220i −0.342277 0.939599i \(-0.611198\pi\)
−0.984855 + 0.173379i \(0.944531\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 341.715 1427.16i 0.167273 0.698607i
\(162\) 0 0
\(163\) 822.212 + 1424.11i 0.395096 + 0.684326i 0.993113 0.117157i \(-0.0373780\pi\)
−0.598018 + 0.801483i \(0.704045\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2783.64 1.28985 0.644923 0.764248i \(-0.276889\pi\)
0.644923 + 0.764248i \(0.276889\pi\)
\(168\) 0 0
\(169\) −2413.67 −1.09862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −64.1081 111.038i −0.0281737 0.0487983i 0.851595 0.524201i \(-0.175636\pi\)
−0.879768 + 0.475402i \(0.842302\pi\)
\(174\) 0 0
\(175\) 422.551 + 1423.34i 0.182525 + 0.614825i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1676.79 968.093i −0.700161 0.404238i 0.107246 0.994233i \(-0.465797\pi\)
−0.807408 + 0.589994i \(0.799130\pi\)
\(180\) 0 0
\(181\) 1596.97i 0.655810i −0.944711 0.327905i \(-0.893657\pi\)
0.944711 0.327905i \(-0.106343\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1072.79 1858.12i 0.426340 0.738442i
\(186\) 0 0
\(187\) −866.863 + 500.484i −0.338991 + 0.195717i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −715.285 + 412.970i −0.270975 + 0.156448i −0.629331 0.777138i \(-0.716671\pi\)
0.358356 + 0.933585i \(0.383338\pi\)
\(192\) 0 0
\(193\) 927.072 1605.74i 0.345762 0.598878i −0.639730 0.768600i \(-0.720954\pi\)
0.985492 + 0.169722i \(0.0542870\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2938.42i 1.06271i 0.847150 + 0.531355i \(0.178317\pi\)
−0.847150 + 0.531355i \(0.821683\pi\)
\(198\) 0 0
\(199\) −2850.16 1645.54i −1.01529 0.586178i −0.102554 0.994727i \(-0.532701\pi\)
−0.912736 + 0.408550i \(0.866035\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1474.14 1397.21i −0.509677 0.483078i
\(204\) 0 0
\(205\) 618.833 + 1071.85i 0.210835 + 0.365177i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −825.560 −0.273230
\(210\) 0 0
\(211\) −1133.21 −0.369733 −0.184867 0.982764i \(-0.559185\pi\)
−0.184867 + 0.982764i \(0.559185\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1221.17 2115.13i −0.387364 0.670934i
\(216\) 0 0
\(217\) −4890.05 + 1451.72i −1.52976 + 0.454145i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1801.53 + 1040.11i 0.548343 + 0.316586i
\(222\) 0 0
\(223\) 1631.23i 0.489845i 0.969543 + 0.244922i \(0.0787624\pi\)
−0.969543 + 0.244922i \(0.921238\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −584.886 + 1013.05i −0.171014 + 0.296205i −0.938775 0.344532i \(-0.888038\pi\)
0.767760 + 0.640737i \(0.221371\pi\)
\(228\) 0 0
\(229\) −4457.87 + 2573.75i −1.28640 + 0.742701i −0.978009 0.208561i \(-0.933122\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3811.38 + 2200.50i −1.07164 + 0.618710i −0.928629 0.371011i \(-0.879011\pi\)
−0.143009 + 0.989721i \(0.545678\pi\)
\(234\) 0 0
\(235\) 172.567 298.895i 0.0479023 0.0829692i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5998.62i 1.62351i −0.583998 0.811755i \(-0.698513\pi\)
0.583998 0.811755i \(-0.301487\pi\)
\(240\) 0 0
\(241\) 796.548 + 459.887i 0.212905 + 0.122921i 0.602661 0.797997i \(-0.294107\pi\)
−0.389756 + 0.920918i \(0.627441\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1924.58 + 1253.16i −0.501865 + 0.326781i
\(246\) 0 0
\(247\) 857.845 + 1485.83i 0.220985 + 0.382758i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 701.991 0.176531 0.0882655 0.996097i \(-0.471868\pi\)
0.0882655 + 0.996097i \(0.471868\pi\)
\(252\) 0 0
\(253\) −2588.94 −0.643341
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2170.80 3759.94i −0.526891 0.912602i −0.999509 0.0313343i \(-0.990024\pi\)
0.472618 0.881267i \(-0.343309\pi\)
\(258\) 0 0
\(259\) −5771.54 1381.92i −1.38466 0.331539i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3606.74 + 2082.35i 0.845632 + 0.488226i 0.859175 0.511683i \(-0.170978\pi\)
−0.0135429 + 0.999908i \(0.504311\pi\)
\(264\) 0 0
\(265\) 4118.33i 0.954668i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4219.12 7307.74i 0.956299 1.65636i 0.224933 0.974374i \(-0.427784\pi\)
0.731366 0.681985i \(-0.238883\pi\)
\(270\) 0 0
\(271\) 4544.68 2623.87i 1.01871 0.588150i 0.104977 0.994475i \(-0.466523\pi\)
0.913729 + 0.406324i \(0.133190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2268.43 1309.68i 0.497423 0.287187i
\(276\) 0 0
\(277\) 198.173 343.245i 0.0429857 0.0744534i −0.843732 0.536765i \(-0.819646\pi\)
0.886718 + 0.462311i \(0.152980\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5244.36i 1.11335i −0.830729 0.556677i \(-0.812076\pi\)
0.830729 0.556677i \(-0.187924\pi\)
\(282\) 0 0
\(283\) −4113.33 2374.83i −0.864000 0.498830i 0.00134996 0.999999i \(-0.499570\pi\)
−0.865350 + 0.501169i \(0.832904\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2355.01 2484.67i 0.484361 0.511030i
\(288\) 0 0
\(289\) 1987.23 + 3441.98i 0.404483 + 0.700586i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3597.22 0.717242 0.358621 0.933483i \(-0.383247\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(294\) 0 0
\(295\) −2783.29 −0.549320
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2690.19 + 4659.54i 0.520326 + 0.901231i
\(300\) 0 0
\(301\) −4647.25 + 4903.13i −0.889910 + 0.938909i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2757.00 1591.76i −0.517592 0.298832i
\(306\) 0 0
\(307\) 27.5911i 0.00512933i 0.999997 + 0.00256467i \(0.000816359\pi\)
−0.999997 + 0.00256467i \(0.999184\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −621.896 + 1077.15i −0.113391 + 0.196398i −0.917135 0.398576i \(-0.869504\pi\)
0.803745 + 0.594974i \(0.202838\pi\)
\(312\) 0 0
\(313\) 7541.55 4354.12i 1.36190 0.786292i 0.372021 0.928224i \(-0.378665\pi\)
0.989876 + 0.141933i \(0.0453317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7799.09 + 4502.81i −1.38183 + 0.797801i −0.992376 0.123245i \(-0.960670\pi\)
−0.389455 + 0.921046i \(0.627337\pi\)
\(318\) 0 0
\(319\) −1791.60 + 3103.15i −0.314453 + 0.544649i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 774.077i 0.133346i
\(324\) 0 0
\(325\) −4714.28 2721.79i −0.804619 0.464547i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −928.404 222.295i −0.155576 0.0372508i
\(330\) 0 0
\(331\) 1194.18 + 2068.38i 0.198302 + 0.343470i 0.947978 0.318336i \(-0.103124\pi\)
−0.749676 + 0.661805i \(0.769791\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1904.08 −0.310541
\(336\) 0 0
\(337\) 11637.2 1.88106 0.940531 0.339707i \(-0.110328\pi\)
0.940531 + 0.339707i \(0.110328\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4499.55 + 7793.45i 0.714558 + 1.23765i
\(342\) 0 0
\(343\) 4837.94 + 4116.79i 0.761586 + 0.648064i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2539.63 1466.26i −0.392895 0.226838i 0.290519 0.956869i \(-0.406172\pi\)
−0.683414 + 0.730031i \(0.739506\pi\)
\(348\) 0 0
\(349\) 63.0106i 0.00966442i 0.999988 + 0.00483221i \(0.00153815\pi\)
−0.999988 + 0.00483221i \(0.998462\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 386.737 669.848i 0.0583114 0.100998i −0.835396 0.549648i \(-0.814762\pi\)
0.893708 + 0.448650i \(0.148095\pi\)
\(354\) 0 0
\(355\) 5598.00 3232.00i 0.836932 0.483203i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10567.3 + 6101.03i −1.55354 + 0.896936i −0.555689 + 0.831390i \(0.687546\pi\)
−0.997850 + 0.0655458i \(0.979121\pi\)
\(360\) 0 0
\(361\) −3110.29 + 5387.17i −0.453460 + 0.785417i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1742.57i 0.249892i
\(366\) 0 0
\(367\) −4835.15 2791.58i −0.687719 0.397055i 0.115038 0.993361i \(-0.463301\pi\)
−0.802757 + 0.596306i \(0.796634\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10920.3 + 3241.94i −1.52818 + 0.453674i
\(372\) 0 0
\(373\) 1656.22 + 2868.66i 0.229909 + 0.398213i 0.957781 0.287499i \(-0.0928240\pi\)
−0.727872 + 0.685713i \(0.759491\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7446.67 1.01730
\(378\) 0 0
\(379\) −1118.64 −0.151611 −0.0758057 0.997123i \(-0.524153\pi\)
−0.0758057 + 0.997123i \(0.524153\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4388.43 + 7600.98i 0.585479 + 1.01408i 0.994816 + 0.101695i \(0.0324267\pi\)
−0.409337 + 0.912383i \(0.634240\pi\)
\(384\) 0 0
\(385\) 2940.65 + 2787.19i 0.389272 + 0.368957i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8285.22 + 4783.47i 1.07989 + 0.623475i 0.930867 0.365359i \(-0.119054\pi\)
0.149023 + 0.988834i \(0.452387\pi\)
\(390\) 0 0
\(391\) 2427.49i 0.313973i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1467.44 2541.68i 0.186924 0.323762i
\(396\) 0 0
\(397\) 8470.20 4890.27i 1.07080 0.618226i 0.142399 0.989809i \(-0.454518\pi\)
0.928399 + 0.371584i \(0.121185\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10450.1 6033.35i 1.30137 0.751349i 0.320735 0.947169i \(-0.396070\pi\)
0.980640 + 0.195820i \(0.0627369\pi\)
\(402\) 0 0
\(403\) 9351.03 16196.5i 1.15585 2.00199i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10469.9i 1.27512i
\(408\) 0 0
\(409\) 6194.67 + 3576.49i 0.748916 + 0.432387i 0.825302 0.564691i \(-0.191005\pi\)
−0.0763859 + 0.997078i \(0.524338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2191.00 + 7380.26i 0.261046 + 0.879319i
\(414\) 0 0
\(415\) −256.017 443.434i −0.0302828 0.0524514i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5703.45 0.664992 0.332496 0.943105i \(-0.392109\pi\)
0.332496 + 0.943105i \(0.392109\pi\)
\(420\) 0 0
\(421\) −10027.7 −1.16086 −0.580428 0.814312i \(-0.697115\pi\)
−0.580428 + 0.814312i \(0.697115\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1228.01 + 2126.97i 0.140158 + 0.242760i
\(426\) 0 0
\(427\) −2050.44 + 8563.59i −0.232384 + 0.970541i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12128.8 7002.59i −1.35551 0.782605i −0.366497 0.930419i \(-0.619443\pi\)
−0.989015 + 0.147814i \(0.952776\pi\)
\(432\) 0 0
\(433\) 3410.83i 0.378554i −0.981924 0.189277i \(-0.939386\pi\)
0.981924 0.189277i \(-0.0606145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1001.05 1733.87i 0.109581 0.189800i
\(438\) 0 0
\(439\) 11009.7 6356.44i 1.19695 0.691062i 0.237080 0.971490i \(-0.423810\pi\)
0.959875 + 0.280428i \(0.0904764\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10853.8 + 6266.44i −1.16406 + 0.672071i −0.952274 0.305245i \(-0.901262\pi\)
−0.211787 + 0.977316i \(0.567928\pi\)
\(444\) 0 0
\(445\) 2387.40 4135.09i 0.254322 0.440499i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10884.1i 1.14399i −0.820258 0.571993i \(-0.806170\pi\)
0.820258 0.571993i \(-0.193830\pi\)
\(450\) 0 0
\(451\) −5230.38 3019.76i −0.546095 0.315288i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1960.69 8188.73i 0.202019 0.843722i
\(456\) 0 0
\(457\) 9222.57 + 15974.0i 0.944012 + 1.63508i 0.757717 + 0.652583i \(0.226315\pi\)
0.186295 + 0.982494i \(0.440352\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4657.01 −0.470496 −0.235248 0.971935i \(-0.575590\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(462\) 0 0
\(463\) −5088.08 −0.510720 −0.255360 0.966846i \(-0.582194\pi\)
−0.255360 + 0.966846i \(0.582194\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7950.04 + 13769.9i 0.787760 + 1.36444i 0.927336 + 0.374229i \(0.122092\pi\)
−0.139577 + 0.990211i \(0.544574\pi\)
\(468\) 0 0
\(469\) 1498.89 + 5048.93i 0.147574 + 0.497096i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10321.4 + 5959.04i 1.00333 + 0.579275i
\(474\) 0 0
\(475\) 2025.62i 0.195667i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9702.00 + 16804.4i −0.925461 + 1.60295i −0.134643 + 0.990894i \(0.542989\pi\)
−0.790818 + 0.612051i \(0.790345\pi\)
\(480\) 0 0
\(481\) 18843.6 10879.3i 1.78626 1.03130i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2380.95 + 1374.64i −0.222914 + 0.128700i
\(486\) 0 0
\(487\) 6123.60 10606.4i 0.569788 0.986903i −0.426798 0.904347i \(-0.640358\pi\)
0.996586 0.0825556i \(-0.0263082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7773.35i 0.714473i 0.934014 + 0.357237i \(0.116281\pi\)
−0.934014 + 0.357237i \(0.883719\pi\)
\(492\) 0 0
\(493\) −2909.64 1679.88i −0.265808 0.153464i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12976.8 12299.6i −1.17121 1.11008i
\(498\) 0 0
\(499\) 9518.91 + 16487.2i 0.853958 + 1.47910i 0.877609 + 0.479378i \(0.159138\pi\)
−0.0236507 + 0.999720i \(0.507529\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14323.9 1.26973 0.634863 0.772624i \(-0.281056\pi\)
0.634863 + 0.772624i \(0.281056\pi\)
\(504\) 0 0
\(505\) 12770.7 1.12532
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4294.66 + 7438.57i 0.373983 + 0.647758i 0.990174 0.139839i \(-0.0446585\pi\)
−0.616191 + 0.787597i \(0.711325\pi\)
\(510\) 0 0
\(511\) −4620.66 + 1371.75i −0.400012 + 0.118753i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7883.28 4551.41i −0.674522 0.389435i
\(516\) 0 0
\(517\) 1684.17i 0.143269i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11308.3 19586.6i 0.950917 1.64704i 0.207471 0.978241i \(-0.433477\pi\)
0.743447 0.668795i \(-0.233190\pi\)
\(522\) 0 0
\(523\) 122.551 70.7547i 0.0102462 0.00591566i −0.494868 0.868968i \(-0.664784\pi\)
0.505114 + 0.863052i \(0.331450\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7307.45 + 4218.96i −0.604018 + 0.348730i
\(528\) 0 0
\(529\) −2944.22 + 5099.53i −0.241984 + 0.419128i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12551.4i 1.02000i
\(534\) 0 0
\(535\) −10416.9 6014.21i −0.841799 0.486013i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5075.72 9991.60i 0.405615 0.798458i
\(540\) 0 0
\(541\) 4655.90 + 8064.25i 0.370005 + 0.640867i 0.989566 0.144081i \(-0.0460227\pi\)
−0.619561 + 0.784949i \(0.712689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −563.408 −0.0442821
\(546\) 0 0
\(547\) 11888.7 0.929294 0.464647 0.885496i \(-0.346181\pi\)
0.464647 + 0.885496i \(0.346181\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1385.50 2399.76i −0.107122 0.185541i
\(552\) 0 0
\(553\) −7894.77 1890.30i −0.607088 0.145360i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18409.4 + 10628.7i 1.40042 + 0.808530i 0.994435 0.105352i \(-0.0335969\pi\)
0.405980 + 0.913882i \(0.366930\pi\)
\(558\) 0 0
\(559\) 24768.3i 1.87404i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4661.33 8073.66i 0.348937 0.604377i −0.637124 0.770762i \(-0.719876\pi\)
0.986061 + 0.166385i \(0.0532093\pi\)
\(564\) 0 0
\(565\) 680.991 393.170i 0.0507071 0.0292758i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14734.2 + 8506.79i −1.08557 + 0.626754i −0.932394 0.361445i \(-0.882284\pi\)
−0.153176 + 0.988199i \(0.548950\pi\)
\(570\) 0 0
\(571\) −1134.69 + 1965.34i −0.0831617 + 0.144040i −0.904606 0.426248i \(-0.859835\pi\)
0.821445 + 0.570288i \(0.193168\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6352.32i 0.460713i
\(576\) 0 0
\(577\) 2687.93 + 1551.88i 0.193934 + 0.111968i 0.593823 0.804596i \(-0.297618\pi\)
−0.399889 + 0.916564i \(0.630951\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −974.288 + 1027.93i −0.0695702 + 0.0734008i
\(582\) 0 0
\(583\) 10048.2 + 17404.1i 0.713818 + 1.23637i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12544.8 −0.882075 −0.441038 0.897489i \(-0.645389\pi\)
−0.441038 + 0.897489i \(0.645389\pi\)
\(588\) 0 0
\(589\) −6959.27 −0.486845
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2644.32 4580.09i −0.183118 0.317170i 0.759823 0.650131i \(-0.225286\pi\)
−0.942941 + 0.332960i \(0.891952\pi\)
\(594\) 0 0
\(595\) −2613.38 + 2757.27i −0.180064 + 0.189978i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5058.01 + 2920.24i 0.345016 + 0.199195i 0.662488 0.749073i \(-0.269501\pi\)
−0.317472 + 0.948268i \(0.602834\pi\)
\(600\) 0 0
\(601\) 10801.2i 0.733098i −0.930399 0.366549i \(-0.880539\pi\)
0.930399 0.366549i \(-0.119461\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −882.018 + 1527.70i −0.0592713 + 0.102661i
\(606\) 0 0
\(607\) −21239.7 + 12262.8i −1.42025 + 0.819984i −0.996320 0.0857094i \(-0.972684\pi\)
−0.423934 + 0.905693i \(0.639351\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3031.15 1750.04i 0.200699 0.115874i
\(612\) 0 0
\(613\) −8223.34 + 14243.2i −0.541823 + 0.938465i 0.456976 + 0.889479i \(0.348932\pi\)
−0.998799 + 0.0489865i \(0.984401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23852.4i 1.55634i −0.628055 0.778169i \(-0.716149\pi\)
0.628055 0.778169i \(-0.283851\pi\)
\(618\) 0 0
\(619\) −14617.4 8439.34i −0.949147 0.547990i −0.0563309 0.998412i \(-0.517940\pi\)
−0.892816 + 0.450422i \(0.851274\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12844.1 3075.36i −0.825983 0.197771i
\(624\) 0 0
\(625\) −411.490 712.722i −0.0263354 0.0456142i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9816.99 −0.622304
\(630\) 0 0
\(631\) −19613.0 −1.23737 −0.618686 0.785638i \(-0.712335\pi\)
−0.618686 + 0.785638i \(0.712335\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1710.49 + 2962.65i 0.106895 + 0.185148i
\(636\) 0 0
\(637\) −23257.0 + 1247.13i −1.44658 + 0.0775716i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7437.62 4294.11i −0.458297 0.264598i 0.253031 0.967458i \(-0.418573\pi\)
−0.711328 + 0.702860i \(0.751906\pi\)
\(642\) 0 0
\(643\) 11966.4i 0.733920i −0.930237 0.366960i \(-0.880399\pi\)
0.930237 0.366960i \(-0.119601\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3663.93 6346.11i 0.222634 0.385613i −0.732973 0.680257i \(-0.761868\pi\)
0.955607 + 0.294645i \(0.0952013\pi\)
\(648\) 0 0
\(649\) 11762.2 6790.91i 0.711412 0.410734i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3124.09 + 1803.69i −0.187221 + 0.108092i −0.590681 0.806905i \(-0.701141\pi\)
0.403460 + 0.914997i \(0.367807\pi\)
\(654\) 0 0
\(655\) 6637.22 11496.0i 0.395936 0.685780i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3244.57i 0.191792i −0.995391 0.0958958i \(-0.969428\pi\)
0.995391 0.0958958i \(-0.0305716\pi\)
\(660\) 0 0
\(661\) −12548.2 7244.69i −0.738377 0.426302i 0.0831019 0.996541i \(-0.473517\pi\)
−0.821479 + 0.570239i \(0.806851\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3003.69 + 891.715i −0.175155 + 0.0519989i
\(666\) 0 0
\(667\) −4344.90 7525.60i −0.252227 0.436870i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15534.8 0.893763
\(672\) 0 0
\(673\) −27609.5 −1.58138 −0.790688 0.612219i \(-0.790277\pi\)
−0.790688 + 0.612219i \(0.790277\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7610.03 + 13181.0i 0.432019 + 0.748279i 0.997047 0.0767925i \(-0.0244679\pi\)
−0.565028 + 0.825072i \(0.691135\pi\)
\(678\) 0 0
\(679\) 5519.32 + 5231.28i 0.311947 + 0.295668i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14491.6 + 8366.71i 0.811866 + 0.468731i 0.847603 0.530630i \(-0.178045\pi\)
−0.0357376 + 0.999361i \(0.511378\pi\)
\(684\) 0 0
\(685\) 6633.16i 0.369986i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20882.4 36169.4i 1.15465 1.99992i
\(690\) 0 0
\(691\) 3981.41 2298.67i 0.219190 0.126549i −0.386385 0.922337i \(-0.626276\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2145.03 1238.43i 0.117073 0.0675920i
\(696\) 0 0
\(697\) 2831.45 4904.21i 0.153872 0.266514i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7621.26i 0.410629i −0.978696 0.205315i \(-0.934178\pi\)
0.978696 0.205315i \(-0.0658217\pi\)
\(702\) 0 0
\(703\) −7011.93 4048.34i −0.376188 0.217192i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10053.1 33863.2i −0.534773 1.80135i
\(708\) 0 0
\(709\) 3850.25 + 6668.83i 0.203948 + 0.353249i 0.949797 0.312867i \(-0.101289\pi\)
−0.745849 + 0.666115i \(0.767956\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21824.2 −1.14631
\(714\) 0 0
\(715\) −14854.8 −0.776977
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5049.89 8746.67i −0.261932 0.453680i 0.704823 0.709383i \(-0.251026\pi\)
−0.966755 + 0.255703i \(0.917693\pi\)
\(720\) 0 0
\(721\) −5862.96 + 24486.4i −0.302841 + 1.26480i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7614.00 + 4395.95i 0.390037 + 0.225188i
\(726\) 0 0
\(727\) 23945.7i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5587.43 + 9677.71i −0.282707 + 0.489662i
\(732\) 0 0
\(733\) 18035.8 10413.0i 0.908822 0.524708i 0.0287698 0.999586i \(-0.490841\pi\)
0.880052 + 0.474878i \(0.157508\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8046.67 4645.75i 0.402175 0.232196i
\(738\) 0 0
\(739\) −7648.41 + 13247.4i −0.380719 + 0.659424i −0.991165 0.132633i \(-0.957657\pi\)
0.610446 + 0.792058i \(0.290990\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27249.8i 1.34549i −0.739875 0.672744i \(-0.765115\pi\)
0.739875 0.672744i \(-0.234885\pi\)
\(744\) 0 0
\(745\) 7062.08 + 4077.29i 0.347295 + 0.200511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7747.28 + 32356.2i −0.377943 + 1.57846i
\(750\) 0 0
\(751\) 19864.5 + 34406.4i 0.965203 + 1.67178i 0.709069 + 0.705139i \(0.249116\pi\)
0.256134 + 0.966641i \(0.417551\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10233.7 0.493302
\(756\) 0 0
\(757\) −24557.2 −1.17906 −0.589530 0.807747i \(-0.700687\pi\)
−0.589530 + 0.807747i \(0.700687\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9686.45 16777.4i −0.461411 0.799187i 0.537621 0.843187i \(-0.319323\pi\)
−0.999032 + 0.0440000i \(0.985990\pi\)
\(762\) 0 0
\(763\) 443.514 + 1493.95i 0.0210436 + 0.0708842i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24444.4 14113.0i −1.15076 0.664393i
\(768\) 0 0
\(769\) 39937.6i 1.87280i −0.350930 0.936402i \(-0.614134\pi\)
0.350930 0.936402i \(-0.385866\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8058.12 13957.1i 0.374942 0.649419i −0.615376 0.788234i \(-0.710996\pi\)
0.990318 + 0.138815i \(0.0443292\pi\)
\(774\) 0 0
\(775\) 19122.3 11040.3i 0.886314 0.511714i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4044.80 2335.27i 0.186034 0.107407i
\(780\) 0 0
\(781\) −15771.4 + 27316.9i −0.722594 + 1.25157i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20184.9i 0.917744i
\(786\) 0 0
\(787\) −19040.0 10992.8i −0.862394 0.497903i 0.00241936 0.999997i \(-0.499230\pi\)
−0.864813 + 0.502094i \(0.832563\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1578.62 1496.23i −0.0709598 0.0672566i
\(792\) 0 0
\(793\) −16142.3 27959.3i −0.722864 1.25204i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2291.42 −0.101840 −0.0509198 0.998703i \(-0.516215\pi\)
−0.0509198 + 0.998703i \(0.516215\pi\)
\(798\) 0 0
\(799\) −1579.15 −0.0699202
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4251.67 + 7364.12i 0.186847 + 0.323629i