Properties

Label 504.2.t.a
Level 504
Weight 2
Character orbit 504.t
Analytic conductor 4.024
Analytic rank 1
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 504.t (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{6} ) q^{3} + q^{5} + ( -2 - \zeta_{6} ) q^{7} + 3 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 - \zeta_{6} ) q^{3} + q^{5} + ( -2 - \zeta_{6} ) q^{7} + 3 \zeta_{6} q^{9} -3 q^{11} -\zeta_{6} q^{13} + ( -1 - \zeta_{6} ) q^{15} -3 \zeta_{6} q^{17} + ( -5 + 5 \zeta_{6} ) q^{19} + ( 1 + 4 \zeta_{6} ) q^{21} + q^{23} -4 q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + ( -9 + 9 \zeta_{6} ) q^{29} + ( -4 + 4 \zeta_{6} ) q^{31} + ( 3 + 3 \zeta_{6} ) q^{33} + ( -2 - \zeta_{6} ) q^{35} + ( -5 + 5 \zeta_{6} ) q^{37} + ( -1 + 2 \zeta_{6} ) q^{39} -7 \zeta_{6} q^{41} + ( -3 + 3 \zeta_{6} ) q^{43} + 3 \zeta_{6} q^{45} -8 \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} + ( -3 + 6 \zeta_{6} ) q^{51} -9 \zeta_{6} q^{53} -3 q^{55} + ( 10 - 5 \zeta_{6} ) q^{57} + ( 4 - 4 \zeta_{6} ) q^{59} -2 \zeta_{6} q^{61} + ( 3 - 9 \zeta_{6} ) q^{63} -\zeta_{6} q^{65} + ( -12 + 12 \zeta_{6} ) q^{67} + ( -1 - \zeta_{6} ) q^{69} + 8 q^{71} + 13 \zeta_{6} q^{73} + ( 4 + 4 \zeta_{6} ) q^{75} + ( 6 + 3 \zeta_{6} ) q^{77} -8 \zeta_{6} q^{79} + ( -9 + 9 \zeta_{6} ) q^{81} + ( 13 - 13 \zeta_{6} ) q^{83} -3 \zeta_{6} q^{85} + ( 18 - 9 \zeta_{6} ) q^{87} + ( 9 - 9 \zeta_{6} ) q^{89} + ( -1 + 3 \zeta_{6} ) q^{91} + ( 8 - 4 \zeta_{6} ) q^{93} + ( -5 + 5 \zeta_{6} ) q^{95} + ( 17 - 17 \zeta_{6} ) q^{97} -9 \zeta_{6} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} + 2q^{5} - 5q^{7} + 3q^{9} + O(q^{10}) \) \( 2q - 3q^{3} + 2q^{5} - 5q^{7} + 3q^{9} - 6q^{11} - q^{13} - 3q^{15} - 3q^{17} - 5q^{19} + 6q^{21} + 2q^{23} - 8q^{25} - 9q^{29} - 4q^{31} + 9q^{33} - 5q^{35} - 5q^{37} - 7q^{41} - 3q^{43} + 3q^{45} - 8q^{47} + 11q^{49} - 9q^{53} - 6q^{55} + 15q^{57} + 4q^{59} - 2q^{61} - 3q^{63} - q^{65} - 12q^{67} - 3q^{69} + 16q^{71} + 13q^{73} + 12q^{75} + 15q^{77} - 8q^{79} - 9q^{81} + 13q^{83} - 3q^{85} + 27q^{87} + 9q^{89} + q^{91} + 12q^{93} - 5q^{95} + 17q^{97} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 + 0.866025i 0 1.00000 0 −2.50000 + 0.866025i 0 1.50000 2.59808i 0
457.1 0 −1.50000 0.866025i 0 1.00000 0 −2.50000 0.866025i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.2.t.a yes 2
3.b odd 2 1 1512.2.t.a 2
4.b odd 2 1 1008.2.t.e 2
7.c even 3 1 504.2.q.a 2
9.c even 3 1 504.2.q.a 2
9.d odd 6 1 1512.2.q.b 2
12.b even 2 1 3024.2.t.c 2
21.h odd 6 1 1512.2.q.b 2
28.g odd 6 1 1008.2.q.b 2
36.f odd 6 1 1008.2.q.b 2
36.h even 6 1 3024.2.q.d 2
63.g even 3 1 inner 504.2.t.a yes 2
63.n odd 6 1 1512.2.t.a 2
84.n even 6 1 3024.2.q.d 2
252.o even 6 1 3024.2.t.c 2
252.bl odd 6 1 1008.2.t.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.q.a 2 7.c even 3 1
504.2.q.a 2 9.c even 3 1
504.2.t.a yes 2 1.a even 1 1 trivial
504.2.t.a yes 2 63.g even 3 1 inner
1008.2.q.b 2 28.g odd 6 1
1008.2.q.b 2 36.f odd 6 1
1008.2.t.e 2 4.b odd 2 1
1008.2.t.e 2 252.bl odd 6 1
1512.2.q.b 2 9.d odd 6 1
1512.2.q.b 2 21.h odd 6 1
1512.2.t.a 2 3.b odd 2 1
1512.2.t.a 2 63.n odd 6 1
3024.2.q.d 2 36.h even 6 1
3024.2.q.d 2 84.n even 6 1
3024.2.t.c 2 12.b even 2 1
3024.2.t.c 2 252.o even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 1 \) acting on \(S_{2}^{\mathrm{new}}(504, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( 1 + 3 T + 3 T^{2} \)
$5$ \( ( 1 - T + 5 T^{2} )^{2} \)
$7$ \( 1 + 5 T + 7 T^{2} \)
$11$ \( ( 1 + 3 T + 11 T^{2} )^{2} \)
$13$ \( 1 + T - 12 T^{2} + 13 T^{3} + 169 T^{4} \)
$17$ \( 1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4} \)
$19$ \( 1 + 5 T + 6 T^{2} + 95 T^{3} + 361 T^{4} \)
$23$ \( ( 1 - T + 23 T^{2} )^{2} \)
$29$ \( 1 + 9 T + 52 T^{2} + 261 T^{3} + 841 T^{4} \)
$31$ \( ( 1 - 7 T + 31 T^{2} )( 1 + 11 T + 31 T^{2} ) \)
$37$ \( 1 + 5 T - 12 T^{2} + 185 T^{3} + 1369 T^{4} \)
$41$ \( 1 + 7 T + 8 T^{2} + 287 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 3 T - 34 T^{2} + 129 T^{3} + 1849 T^{4} \)
$47$ \( 1 + 8 T + 17 T^{2} + 376 T^{3} + 2209 T^{4} \)
$53$ \( 1 + 9 T + 28 T^{2} + 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 4 T - 43 T^{2} - 236 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 2 T - 57 T^{2} + 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 12 T + 77 T^{2} + 804 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 13 T + 96 T^{2} - 949 T^{3} + 5329 T^{4} \)
$79$ \( 1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 13 T + 86 T^{2} - 1079 T^{3} + 6889 T^{4} \)
$89$ \( 1 - 9 T - 8 T^{2} - 801 T^{3} + 7921 T^{4} \)
$97$ \( 1 - 17 T + 192 T^{2} - 1649 T^{3} + 9409 T^{4} \)
show more
show less