Properties

Label 504.2.s.i.361.2
Level $504$
Weight $2$
Character 504.361
Analytic conductor $4.024$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(289,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 504.361
Dual form 504.2.s.i.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63746 + 2.83616i) q^{5} +(-1.50000 - 2.17945i) q^{7} +O(q^{10})\) \(q+(1.63746 + 2.83616i) q^{5} +(-1.50000 - 2.17945i) q^{7} +(1.63746 - 2.83616i) q^{11} +6.27492 q^{13} +(-2.00000 + 3.46410i) q^{17} +(3.13746 + 5.43424i) q^{19} +(2.00000 + 3.46410i) q^{23} +(-2.86254 + 4.95807i) q^{25} -5.27492 q^{29} +(0.500000 - 0.866025i) q^{31} +(3.72508 - 7.82300i) q^{35} +(1.13746 + 1.97014i) q^{37} +4.54983 q^{41} +0.274917 q^{43} +(-3.00000 - 5.19615i) q^{47} +(-2.50000 + 6.53835i) q^{49} +(4.63746 - 8.03231i) q^{53} +10.7251 q^{55} +(-0.637459 + 1.10411i) q^{59} +(-5.00000 - 8.66025i) q^{61} +(10.2749 + 17.7967i) q^{65} +(0.137459 - 0.238085i) q^{67} -2.00000 q^{71} +(2.13746 - 3.70219i) q^{73} +(-8.63746 + 0.685484i) q^{77} +(-5.77492 - 10.0025i) q^{79} -7.27492 q^{83} -13.0997 q^{85} +(-5.27492 - 9.13642i) q^{89} +(-9.41238 - 13.6759i) q^{91} +(-10.2749 + 17.7967i) q^{95} +8.72508 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{5} - 6 q^{7} - q^{11} + 10 q^{13} - 8 q^{17} + 5 q^{19} + 8 q^{23} - 19 q^{25} - 6 q^{29} + 2 q^{31} + 30 q^{35} - 3 q^{37} - 12 q^{41} - 14 q^{43} - 12 q^{47} - 10 q^{49} + 11 q^{53} + 58 q^{55} + 5 q^{59} - 20 q^{61} + 26 q^{65} - 7 q^{67} - 8 q^{71} + q^{73} - 27 q^{77} - 8 q^{79} - 14 q^{83} + 8 q^{85} - 6 q^{89} - 15 q^{91} - 26 q^{95} + 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.63746 + 2.83616i 0.732294 + 1.26837i 0.955901 + 0.293691i \(0.0948835\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −1.50000 2.17945i −0.566947 0.823754i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.63746 2.83616i 0.493712 0.855135i −0.506261 0.862380i \(-0.668973\pi\)
0.999974 + 0.00724520i \(0.00230624\pi\)
\(12\) 0 0
\(13\) 6.27492 1.74035 0.870174 0.492744i \(-0.164006\pi\)
0.870174 + 0.492744i \(0.164006\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 + 3.46410i −0.485071 + 0.840168i −0.999853 0.0171533i \(-0.994540\pi\)
0.514782 + 0.857321i \(0.327873\pi\)
\(18\) 0 0
\(19\) 3.13746 + 5.43424i 0.719782 + 1.24670i 0.961086 + 0.276250i \(0.0890918\pi\)
−0.241303 + 0.970450i \(0.577575\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0 0
\(25\) −2.86254 + 4.95807i −0.572508 + 0.991613i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.27492 −0.979528 −0.489764 0.871855i \(-0.662917\pi\)
−0.489764 + 0.871855i \(0.662917\pi\)
\(30\) 0 0
\(31\) 0.500000 0.866025i 0.0898027 0.155543i −0.817625 0.575751i \(-0.804710\pi\)
0.907428 + 0.420208i \(0.138043\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.72508 7.82300i 0.629654 1.32233i
\(36\) 0 0
\(37\) 1.13746 + 1.97014i 0.186997 + 0.323888i 0.944248 0.329236i \(-0.106791\pi\)
−0.757251 + 0.653124i \(0.773458\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.54983 0.710565 0.355282 0.934759i \(-0.384385\pi\)
0.355282 + 0.934759i \(0.384385\pi\)
\(42\) 0 0
\(43\) 0.274917 0.0419245 0.0209622 0.999780i \(-0.493327\pi\)
0.0209622 + 0.999780i \(0.493327\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −2.50000 + 6.53835i −0.357143 + 0.934050i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.63746 8.03231i 0.637004 1.10332i −0.349083 0.937092i \(-0.613507\pi\)
0.986087 0.166231i \(-0.0531598\pi\)
\(54\) 0 0
\(55\) 10.7251 1.44617
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.637459 + 1.10411i −0.0829900 + 0.143743i −0.904533 0.426404i \(-0.859780\pi\)
0.821543 + 0.570147i \(0.193114\pi\)
\(60\) 0 0
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.2749 + 17.7967i 1.27445 + 2.20741i
\(66\) 0 0
\(67\) 0.137459 0.238085i 0.0167932 0.0290867i −0.857507 0.514473i \(-0.827988\pi\)
0.874300 + 0.485386i \(0.161321\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 2.13746 3.70219i 0.250171 0.433308i −0.713402 0.700755i \(-0.752847\pi\)
0.963573 + 0.267447i \(0.0861800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.63746 + 0.685484i −0.984330 + 0.0781181i
\(78\) 0 0
\(79\) −5.77492 10.0025i −0.649729 1.12536i −0.983188 0.182599i \(-0.941549\pi\)
0.333459 0.942765i \(-0.391784\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.27492 −0.798526 −0.399263 0.916836i \(-0.630734\pi\)
−0.399263 + 0.916836i \(0.630734\pi\)
\(84\) 0 0
\(85\) −13.0997 −1.42086
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.27492 9.13642i −0.559140 0.968459i −0.997568 0.0696929i \(-0.977798\pi\)
0.438428 0.898766i \(-0.355535\pi\)
\(90\) 0 0
\(91\) −9.41238 13.6759i −0.986685 1.43362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.2749 + 17.7967i −1.05418 + 1.82590i
\(96\) 0 0
\(97\) 8.72508 0.885898 0.442949 0.896547i \(-0.353932\pi\)
0.442949 + 0.896547i \(0.353932\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) −5.41238 9.37451i −0.533297 0.923698i −0.999244 0.0388850i \(-0.987619\pi\)
0.465946 0.884813i \(-0.345714\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.91238 13.7046i −0.764918 1.32488i −0.940290 0.340375i \(-0.889446\pi\)
0.175372 0.984502i \(-0.443887\pi\)
\(108\) 0 0
\(109\) −8.41238 + 14.5707i −0.805759 + 1.39562i 0.110018 + 0.993930i \(0.464909\pi\)
−0.915777 + 0.401687i \(0.868424\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.54983 0.428012 0.214006 0.976832i \(-0.431349\pi\)
0.214006 + 0.976832i \(0.431349\pi\)
\(114\) 0 0
\(115\) −6.54983 + 11.3446i −0.610775 + 1.05789i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.5498 0.837253i 0.967102 0.0767509i
\(120\) 0 0
\(121\) 0.137459 + 0.238085i 0.0124962 + 0.0216441i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.37459 −0.212389
\(126\) 0 0
\(127\) −6.45017 −0.572360 −0.286180 0.958176i \(-0.592385\pi\)
−0.286180 + 0.958176i \(0.592385\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.63746 + 6.30026i 0.317806 + 0.550457i 0.980030 0.198850i \(-0.0637205\pi\)
−0.662224 + 0.749306i \(0.730387\pi\)
\(132\) 0 0
\(133\) 7.13746 14.9893i 0.618896 1.29974i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.725083 1.25588i 0.0619480 0.107297i −0.833388 0.552688i \(-0.813602\pi\)
0.895336 + 0.445391i \(0.146935\pi\)
\(138\) 0 0
\(139\) 8.27492 0.701869 0.350935 0.936400i \(-0.385864\pi\)
0.350935 + 0.936400i \(0.385864\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.2749 17.7967i 0.859232 1.48823i
\(144\) 0 0
\(145\) −8.63746 14.9605i −0.717302 1.24240i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.27492 12.6005i −0.595984 1.03228i −0.993407 0.114640i \(-0.963429\pi\)
0.397423 0.917636i \(-0.369905\pi\)
\(150\) 0 0
\(151\) −11.1873 + 19.3770i −0.910409 + 1.57687i −0.0969217 + 0.995292i \(0.530900\pi\)
−0.813487 + 0.581583i \(0.802434\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.27492 0.263048
\(156\) 0 0
\(157\) 0.274917 0.476171i 0.0219408 0.0380026i −0.854847 0.518881i \(-0.826349\pi\)
0.876787 + 0.480878i \(0.159682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.54983 9.55505i 0.358577 0.753044i
\(162\) 0 0
\(163\) 6.00000 + 10.3923i 0.469956 + 0.813988i 0.999410 0.0343508i \(-0.0109363\pi\)
−0.529454 + 0.848339i \(0.677603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 26.3746 2.02881
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.2749 19.5287i −0.857216 1.48474i −0.874574 0.484892i \(-0.838859\pi\)
0.0173577 0.999849i \(-0.494475\pi\)
\(174\) 0 0
\(175\) 15.0997 1.19834i 1.14143 0.0905857i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.27492 + 14.3326i −0.618496 + 1.07127i 0.371264 + 0.928527i \(0.378925\pi\)
−0.989760 + 0.142740i \(0.954409\pi\)
\(180\) 0 0
\(181\) −18.8248 −1.39923 −0.699616 0.714519i \(-0.746646\pi\)
−0.699616 + 0.714519i \(0.746646\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.72508 + 6.45203i −0.273874 + 0.474363i
\(186\) 0 0
\(187\) 6.54983 + 11.3446i 0.478971 + 0.829603i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.27492 + 3.94027i 0.164607 + 0.285108i 0.936516 0.350626i \(-0.114031\pi\)
−0.771909 + 0.635734i \(0.780698\pi\)
\(192\) 0 0
\(193\) −0.225083 + 0.389855i −0.0162018 + 0.0280624i −0.874013 0.485903i \(-0.838491\pi\)
0.857811 + 0.513966i \(0.171824\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.45017 0.103320 0.0516600 0.998665i \(-0.483549\pi\)
0.0516600 + 0.998665i \(0.483549\pi\)
\(198\) 0 0
\(199\) 2.54983 4.41644i 0.180753 0.313073i −0.761384 0.648301i \(-0.775480\pi\)
0.942137 + 0.335228i \(0.108813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.91238 + 11.4964i 0.555340 + 0.806890i
\(204\) 0 0
\(205\) 7.45017 + 12.9041i 0.520342 + 0.901259i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.5498 1.42146
\(210\) 0 0
\(211\) −27.6495 −1.90347 −0.951735 0.306921i \(-0.900701\pi\)
−0.951735 + 0.306921i \(0.900701\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.450166 + 0.779710i 0.0307010 + 0.0531758i
\(216\) 0 0
\(217\) −2.63746 + 0.209313i −0.179042 + 0.0142091i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.5498 + 21.7370i −0.844193 + 1.46219i
\(222\) 0 0
\(223\) −1.27492 −0.0853748 −0.0426874 0.999088i \(-0.513592\pi\)
−0.0426874 + 0.999088i \(0.513592\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.63746 + 9.76436i −0.374171 + 0.648084i −0.990203 0.139638i \(-0.955406\pi\)
0.616031 + 0.787722i \(0.288739\pi\)
\(228\) 0 0
\(229\) −9.13746 15.8265i −0.603820 1.04585i −0.992237 0.124363i \(-0.960311\pi\)
0.388416 0.921484i \(-0.373022\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.274917 0.476171i −0.0180104 0.0311950i 0.856880 0.515516i \(-0.172400\pi\)
−0.874890 + 0.484321i \(0.839067\pi\)
\(234\) 0 0
\(235\) 9.82475 17.0170i 0.640896 1.11006i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.4502 −0.999388 −0.499694 0.866202i \(-0.666554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(240\) 0 0
\(241\) −4.91238 + 8.50848i −0.316434 + 0.548080i −0.979741 0.200267i \(-0.935819\pi\)
0.663307 + 0.748347i \(0.269152\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −22.6375 + 3.61587i −1.44625 + 0.231010i
\(246\) 0 0
\(247\) 19.6873 + 34.0994i 1.25267 + 2.16969i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.3746 1.15979 0.579897 0.814690i \(-0.303093\pi\)
0.579897 + 0.814690i \(0.303093\pi\)
\(252\) 0 0
\(253\) 13.0997 0.823569
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.54983 + 9.61260i 0.346189 + 0.599617i 0.985569 0.169274i \(-0.0541422\pi\)
−0.639380 + 0.768891i \(0.720809\pi\)
\(258\) 0 0
\(259\) 2.58762 5.43424i 0.160787 0.337667i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.72508 + 8.18408i −0.291361 + 0.504652i −0.974132 0.225980i \(-0.927441\pi\)
0.682771 + 0.730633i \(0.260775\pi\)
\(264\) 0 0
\(265\) 30.3746 1.86590
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.3625 17.9484i 0.631815 1.09434i −0.355365 0.934728i \(-0.615643\pi\)
0.987180 0.159609i \(-0.0510232\pi\)
\(270\) 0 0
\(271\) −0.637459 1.10411i −0.0387229 0.0670699i 0.846014 0.533160i \(-0.178996\pi\)
−0.884737 + 0.466090i \(0.845662\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.37459 + 16.2373i 0.565309 + 0.979144i
\(276\) 0 0
\(277\) 13.4124 23.2309i 0.805872 1.39581i −0.109830 0.993950i \(-0.535030\pi\)
0.915701 0.401860i \(-0.131636\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.5498 1.58383 0.791915 0.610631i \(-0.209084\pi\)
0.791915 + 0.610631i \(0.209084\pi\)
\(282\) 0 0
\(283\) 12.9622 22.4512i 0.770523 1.33459i −0.166753 0.985999i \(-0.553328\pi\)
0.937276 0.348587i \(-0.113338\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.82475 9.91613i −0.402852 0.585331i
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.8248 1.62554 0.812770 0.582585i \(-0.197959\pi\)
0.812770 + 0.582585i \(0.197959\pi\)
\(294\) 0 0
\(295\) −4.17525 −0.243092
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.5498 + 21.7370i 0.725776 + 1.25708i
\(300\) 0 0
\(301\) −0.412376 0.599168i −0.0237689 0.0345355i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.3746 28.3616i 0.937606 1.62398i
\(306\) 0 0
\(307\) 11.3746 0.649182 0.324591 0.945854i \(-0.394773\pi\)
0.324591 + 0.945854i \(0.394773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.27492 + 3.94027i −0.128999 + 0.223432i −0.923289 0.384106i \(-0.874510\pi\)
0.794290 + 0.607539i \(0.207843\pi\)
\(312\) 0 0
\(313\) 9.77492 + 16.9307i 0.552511 + 0.956977i 0.998093 + 0.0617357i \(0.0196636\pi\)
−0.445582 + 0.895241i \(0.647003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.9124 24.0969i −0.781397 1.35342i −0.931128 0.364692i \(-0.881174\pi\)
0.149731 0.988727i \(-0.452159\pi\)
\(318\) 0 0
\(319\) −8.63746 + 14.9605i −0.483605 + 0.837628i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −25.0997 −1.39658
\(324\) 0 0
\(325\) −17.9622 + 31.1115i −0.996364 + 1.72575i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.82475 + 14.3326i −0.376261 + 0.790181i
\(330\) 0 0
\(331\) −0.587624 1.01779i −0.0322987 0.0559431i 0.849424 0.527711i \(-0.176949\pi\)
−0.881723 + 0.471768i \(0.843616\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.900331 0.0491903
\(336\) 0 0
\(337\) −24.0997 −1.31279 −0.656396 0.754416i \(-0.727920\pi\)
−0.656396 + 0.754416i \(0.727920\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.63746 2.83616i −0.0886734 0.153587i
\(342\) 0 0
\(343\) 18.0000 4.35890i 0.971909 0.235358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0997 26.1534i 0.810593 1.40399i −0.101857 0.994799i \(-0.532478\pi\)
0.912450 0.409189i \(-0.134188\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.2749 + 17.7967i −0.546879 + 0.947222i 0.451607 + 0.892217i \(0.350851\pi\)
−0.998486 + 0.0550049i \(0.982483\pi\)
\(354\) 0 0
\(355\) −3.27492 5.67232i −0.173815 0.301056i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.82475 17.0170i −0.518531 0.898121i −0.999768 0.0215311i \(-0.993146\pi\)
0.481238 0.876590i \(-0.340187\pi\)
\(360\) 0 0
\(361\) −10.1873 + 17.6449i −0.536173 + 0.928679i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0000 0.732793
\(366\) 0 0
\(367\) −11.0498 + 19.1389i −0.576797 + 0.999041i 0.419047 + 0.907964i \(0.362364\pi\)
−0.995844 + 0.0910767i \(0.970969\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.4622 + 1.94136i −1.27001 + 0.100791i
\(372\) 0 0
\(373\) 3.13746 + 5.43424i 0.162451 + 0.281374i 0.935747 0.352671i \(-0.114727\pi\)
−0.773296 + 0.634045i \(0.781393\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −33.0997 −1.70472
\(378\) 0 0
\(379\) 13.1752 0.676767 0.338384 0.941008i \(-0.390120\pi\)
0.338384 + 0.941008i \(0.390120\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.27492 + 9.13642i 0.269536 + 0.466849i 0.968742 0.248070i \(-0.0797965\pi\)
−0.699206 + 0.714920i \(0.746463\pi\)
\(384\) 0 0
\(385\) −16.0876 23.3748i −0.819901 1.19129i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.00000 + 1.73205i −0.0507020 + 0.0878185i −0.890263 0.455448i \(-0.849479\pi\)
0.839561 + 0.543266i \(0.182813\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.9124 32.7572i 0.951585 1.64819i
\(396\) 0 0
\(397\) 1.68729 + 2.92248i 0.0846828 + 0.146675i 0.905256 0.424867i \(-0.139679\pi\)
−0.820573 + 0.571541i \(0.806346\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) 3.13746 5.43424i 0.156288 0.270699i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.45017 0.369291
\(408\) 0 0
\(409\) −5.22508 + 9.05011i −0.258364 + 0.447499i −0.965804 0.259274i \(-0.916517\pi\)
0.707440 + 0.706773i \(0.249850\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.36254 0.266857i 0.165460 0.0131312i
\(414\) 0 0
\(415\) −11.9124 20.6328i −0.584756 1.01283i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −28.5498 −1.39475 −0.697375 0.716706i \(-0.745649\pi\)
−0.697375 + 0.716706i \(0.745649\pi\)
\(420\) 0 0
\(421\) 8.82475 0.430092 0.215046 0.976604i \(-0.431010\pi\)
0.215046 + 0.976604i \(0.431010\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.4502 19.8323i −0.555415 0.962006i
\(426\) 0 0
\(427\) −11.3746 + 23.8876i −0.550455 + 1.15600i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.82475 + 15.2849i −0.425073 + 0.736249i −0.996427 0.0844552i \(-0.973085\pi\)
0.571354 + 0.820704i \(0.306418\pi\)
\(432\) 0 0
\(433\) 3.17525 0.152593 0.0762963 0.997085i \(-0.475690\pi\)
0.0762963 + 0.997085i \(0.475690\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.5498 + 21.7370i −0.600340 + 1.03982i
\(438\) 0 0
\(439\) −8.63746 14.9605i −0.412243 0.714027i 0.582891 0.812550i \(-0.301921\pi\)
−0.995135 + 0.0985236i \(0.968588\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.18729 5.52055i −0.151433 0.262289i 0.780322 0.625378i \(-0.215055\pi\)
−0.931754 + 0.363089i \(0.881722\pi\)
\(444\) 0 0
\(445\) 17.2749 29.9210i 0.818910 1.41839i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5498 −0.969807 −0.484903 0.874568i \(-0.661145\pi\)
−0.484903 + 0.874568i \(0.661145\pi\)
\(450\) 0 0
\(451\) 7.45017 12.9041i 0.350815 0.607629i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 23.3746 49.0887i 1.09582 2.30131i
\(456\) 0 0
\(457\) −18.3248 31.7394i −0.857196 1.48471i −0.874593 0.484858i \(-0.838871\pi\)
0.0173972 0.999849i \(-0.494462\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.64950 0.169974 0.0849872 0.996382i \(-0.472915\pi\)
0.0849872 + 0.996382i \(0.472915\pi\)
\(462\) 0 0
\(463\) 13.1752 0.612306 0.306153 0.951982i \(-0.400958\pi\)
0.306153 + 0.951982i \(0.400958\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.2749 + 35.1172i 0.938211 + 1.62503i 0.768805 + 0.639483i \(0.220852\pi\)
0.169406 + 0.985546i \(0.445815\pi\)
\(468\) 0 0
\(469\) −0.725083 + 0.0575438i −0.0334812 + 0.00265713i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.450166 0.779710i 0.0206986 0.0358511i
\(474\) 0 0
\(475\) −35.9244 −1.64833
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.72508 + 4.71998i −0.124512 + 0.215661i −0.921542 0.388278i \(-0.873070\pi\)
0.797030 + 0.603940i \(0.206403\pi\)
\(480\) 0 0
\(481\) 7.13746 + 12.3624i 0.325440 + 0.563679i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.2870 + 24.7457i 0.648738 + 1.12365i
\(486\) 0 0
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −36.9244 −1.66638 −0.833188 0.552990i \(-0.813487\pi\)
−0.833188 + 0.552990i \(0.813487\pi\)
\(492\) 0 0
\(493\) 10.5498 18.2728i 0.475141 0.822968i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.00000 + 4.35890i 0.134568 + 0.195523i
\(498\) 0 0
\(499\) −16.1375 27.9509i −0.722412 1.25125i −0.960030 0.279896i \(-0.909700\pi\)
0.237619 0.971359i \(-0.423633\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.6495 1.67871 0.839354 0.543585i \(-0.182933\pi\)
0.839354 + 0.543585i \(0.182933\pi\)
\(504\) 0 0
\(505\) −19.6495 −0.874391
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.63746 9.76436i −0.249876 0.432798i 0.713615 0.700538i \(-0.247057\pi\)
−0.963491 + 0.267740i \(0.913723\pi\)
\(510\) 0 0
\(511\) −11.2749 + 0.894797i −0.498773 + 0.0395835i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.7251 30.7007i 0.781060 1.35284i
\(516\) 0 0
\(517\) −19.6495 −0.864184
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.27492 + 12.6005i −0.318720 + 0.552039i −0.980221 0.197905i \(-0.936586\pi\)
0.661501 + 0.749944i \(0.269920\pi\)
\(522\) 0 0
\(523\) 8.86254 + 15.3504i 0.387532 + 0.671225i 0.992117 0.125316i \(-0.0399944\pi\)
−0.604585 + 0.796541i \(0.706661\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.00000 + 3.46410i 0.0871214 + 0.150899i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.5498 1.23663
\(534\) 0 0
\(535\) 25.9124 44.8816i 1.12029 1.94040i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.4502 + 17.7967i 0.622413 + 0.766557i
\(540\) 0 0
\(541\) 4.13746 + 7.16629i 0.177883 + 0.308103i 0.941155 0.337974i \(-0.109742\pi\)
−0.763272 + 0.646077i \(0.776408\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −55.0997 −2.36021
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.5498 28.6652i −0.705047 1.22118i
\(552\) 0 0
\(553\) −13.1375 + 27.5898i −0.558662 + 1.17324i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.9124 + 25.8290i −0.631858 + 1.09441i 0.355314 + 0.934747i \(0.384374\pi\)
−0.987172 + 0.159663i \(0.948959\pi\)
\(558\) 0 0
\(559\) 1.72508 0.0729632
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.63746 13.2285i 0.321881 0.557513i −0.658996 0.752147i \(-0.729018\pi\)
0.980876 + 0.194633i \(0.0623517\pi\)
\(564\) 0 0
\(565\) 7.45017 + 12.9041i 0.313431 + 0.542878i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.72508 + 9.91613i 0.240008 + 0.415706i 0.960716 0.277532i \(-0.0895166\pi\)
−0.720708 + 0.693238i \(0.756183\pi\)
\(570\) 0 0
\(571\) −4.13746 + 7.16629i −0.173147 + 0.299900i −0.939519 0.342498i \(-0.888727\pi\)
0.766371 + 0.642398i \(0.222060\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.9003 −0.955010
\(576\) 0 0
\(577\) 12.5000 21.6506i 0.520382 0.901328i −0.479337 0.877631i \(-0.659123\pi\)
0.999719 0.0236970i \(-0.00754370\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.9124 + 15.8553i 0.452722 + 0.657789i
\(582\) 0 0
\(583\) −15.1873 26.3052i −0.628993 1.08945i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.27492 −0.382817 −0.191408 0.981510i \(-0.561305\pi\)
−0.191408 + 0.981510i \(0.561305\pi\)
\(588\) 0 0
\(589\) 6.27492 0.258553
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.274917 0.476171i −0.0112895 0.0195540i 0.860325 0.509745i \(-0.170260\pi\)
−0.871615 + 0.490191i \(0.836927\pi\)
\(594\) 0 0
\(595\) 19.6495 + 28.5501i 0.805551 + 1.17044i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.2749 19.5287i 0.460681 0.797922i −0.538314 0.842744i \(-0.680939\pi\)
0.998995 + 0.0448219i \(0.0142720\pi\)
\(600\) 0 0
\(601\) 4.09967 0.167229 0.0836145 0.996498i \(-0.473354\pi\)
0.0836145 + 0.996498i \(0.473354\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.450166 + 0.779710i −0.0183018 + 0.0316997i
\(606\) 0 0
\(607\) 3.50000 + 6.06218i 0.142061 + 0.246056i 0.928272 0.371901i \(-0.121294\pi\)
−0.786212 + 0.617957i \(0.787961\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.8248 32.6054i −0.761568 1.31907i
\(612\) 0 0
\(613\) 4.27492 7.40437i 0.172662 0.299060i −0.766688 0.642020i \(-0.778096\pi\)
0.939350 + 0.342961i \(0.111430\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −14.4124 + 24.9630i −0.579282 + 1.00335i 0.416280 + 0.909237i \(0.363334\pi\)
−0.995562 + 0.0941097i \(0.970000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 + 25.2011i −0.480770 + 1.00966i
\(624\) 0 0
\(625\) 10.4244 + 18.0556i 0.416977 + 0.722225i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.09967 −0.362828
\(630\) 0 0
\(631\) 19.8248 0.789211 0.394605 0.918851i \(-0.370881\pi\)
0.394605 + 0.918851i \(0.370881\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.5619 18.2937i −0.419135 0.725964i
\(636\) 0 0
\(637\) −15.6873 + 41.0276i −0.621553 + 1.62557i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.82475 + 3.16056i −0.0720734 + 0.124835i −0.899810 0.436282i \(-0.856295\pi\)
0.827736 + 0.561117i \(0.189628\pi\)
\(642\) 0 0
\(643\) 5.37459 0.211953 0.105976 0.994369i \(-0.466203\pi\)
0.105976 + 0.994369i \(0.466203\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.0000 + 29.4449i −0.668339 + 1.15760i 0.310029 + 0.950727i \(0.399661\pi\)
−0.978368 + 0.206870i \(0.933672\pi\)
\(648\) 0 0
\(649\) 2.08762 + 3.61587i 0.0819464 + 0.141935i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.46221 5.99672i −0.135487 0.234670i 0.790297 0.612725i \(-0.209926\pi\)
−0.925783 + 0.378055i \(0.876593\pi\)
\(654\) 0 0
\(655\) −11.9124 + 20.6328i −0.465455 + 0.806192i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.1993 1.64385 0.821926 0.569594i \(-0.192899\pi\)
0.821926 + 0.569594i \(0.192899\pi\)
\(660\) 0 0
\(661\) −3.58762 + 6.21395i −0.139542 + 0.241695i −0.927323 0.374261i \(-0.877896\pi\)
0.787781 + 0.615955i \(0.211230\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 54.1993 4.30136i 2.10176 0.166799i
\(666\) 0 0
\(667\) −10.5498 18.2728i −0.408491 0.707528i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −32.7492 −1.26427
\(672\) 0 0
\(673\) 41.5498 1.60163 0.800814 0.598913i \(-0.204400\pi\)
0.800814 + 0.598913i \(0.204400\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.63746 11.4964i −0.255098 0.441843i 0.709824 0.704379i \(-0.248774\pi\)
−0.964922 + 0.262536i \(0.915441\pi\)
\(678\) 0 0
\(679\) −13.0876 19.0159i −0.502257 0.729762i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.08762 10.5441i 0.232936 0.403458i −0.725735 0.687975i \(-0.758500\pi\)
0.958671 + 0.284517i \(0.0918332\pi\)
\(684\) 0 0
\(685\) 4.74917 0.181457
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.0997 50.4021i 1.10861 1.92017i
\(690\) 0 0
\(691\) 5.41238 + 9.37451i 0.205896 + 0.356623i 0.950418 0.310975i \(-0.100656\pi\)
−0.744522 + 0.667598i \(0.767322\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.5498 + 23.4690i 0.513975 + 0.890230i
\(696\) 0 0
\(697\) −9.09967 + 15.7611i −0.344675 + 0.596994i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.9244 0.488149 0.244074 0.969757i \(-0.421516\pi\)
0.244074 + 0.969757i \(0.421516\pi\)
\(702\) 0 0
\(703\) −7.13746 + 12.3624i −0.269194 + 0.466258i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.8248 1.25588i 0.595151 0.0472322i
\(708\) 0 0
\(709\) 14.0997 + 24.4213i 0.529524 + 0.917163i 0.999407 + 0.0344340i \(0.0109628\pi\)
−0.469883 + 0.882729i \(0.655704\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 67.2990 2.51684
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.0997 + 24.4213i 0.525829 + 0.910762i 0.999547 + 0.0300860i \(0.00957813\pi\)
−0.473718 + 0.880676i \(0.657089\pi\)
\(720\) 0 0
\(721\) −12.3127 + 25.8578i −0.458549 + 0.962993i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.0997 26.1534i 0.560788 0.971313i
\(726\) 0 0
\(727\) 31.5498 1.17012 0.585059 0.810991i \(-0.301071\pi\)
0.585059 + 0.810991i \(0.301071\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.549834 + 0.952341i −0.0203364 + 0.0352236i
\(732\) 0 0
\(733\) −2.96221 5.13070i −0.109412 0.189507i 0.806120 0.591752i \(-0.201563\pi\)
−0.915532 + 0.402245i \(0.868230\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.450166 0.779710i −0.0165821 0.0287210i
\(738\) 0 0
\(739\) −0.687293 + 1.19043i −0.0252825 + 0.0437905i −0.878390 0.477945i \(-0.841382\pi\)
0.853107 + 0.521735i \(0.174715\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.1993 1.62152 0.810758 0.585381i \(-0.199055\pi\)
0.810758 + 0.585381i \(0.199055\pi\)
\(744\) 0 0
\(745\) 23.8248 41.2657i 0.872871 1.51186i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 + 37.8016i −0.657706 + 1.38124i
\(750\) 0 0
\(751\) 5.22508 + 9.05011i 0.190666 + 0.330243i 0.945471 0.325706i \(-0.105602\pi\)
−0.754805 + 0.655949i \(0.772269\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −73.2749 −2.66675
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.5498 21.7370i −0.454931 0.787964i 0.543753 0.839245i \(-0.317003\pi\)
−0.998684 + 0.0512814i \(0.983669\pi\)
\(762\) 0 0
\(763\) 44.3746 3.52165i 1.60647 0.127492i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.00000 + 6.92820i −0.144432 + 0.250163i
\(768\) 0 0
\(769\) −32.6495 −1.17737 −0.588686 0.808362i \(-0.700354\pi\)
−0.588686 + 0.808362i \(0.700354\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.54983 2.68439i 0.0557437 0.0965509i −0.836807 0.547498i \(-0.815580\pi\)
0.892551 + 0.450947i \(0.148914\pi\)
\(774\) 0 0
\(775\) 2.86254 + 4.95807i 0.102826 + 0.178099i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.2749 + 24.7249i 0.511452 + 0.885861i
\(780\) 0 0
\(781\) −3.27492 + 5.67232i −0.117186 + 0.202972i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.80066 0.0642684
\(786\) 0 0
\(787\) −1.27492 + 2.20822i −0.0454459 + 0.0787146i −0.887854 0.460126i \(-0.847804\pi\)
0.842408 + 0.538841i \(0.181138\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.82475 9.91613i −0.242660 0.352577i
\(792\) 0 0
\(793\) −31.3746 54.3424i −1.11414 1.92975i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0