# Properties

 Label 504.2.s.b Level $504$ Weight $2$ Character orbit 504.s Analytic conductor $4.024$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [504,2,Mod(289,504)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(504, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("504.289");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$504 = 2^{3} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 504.s (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.02446026187$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{5} + ( - \zeta_{6} - 2) q^{7}+O(q^{10})$$ q + (z - 1) * q^5 + (-z - 2) * q^7 $$q + (\zeta_{6} - 1) q^{5} + ( - \zeta_{6} - 2) q^{7} + 5 \zeta_{6} q^{11} + 2 q^{13} + 6 \zeta_{6} q^{17} + (2 \zeta_{6} - 2) q^{19} + (6 \zeta_{6} - 6) q^{23} + 4 \zeta_{6} q^{25} + 3 q^{29} - 5 \zeta_{6} q^{31} + ( - 2 \zeta_{6} + 3) q^{35} + ( - 2 \zeta_{6} + 2) q^{37} - 8 q^{41} - 4 q^{43} + ( - 4 \zeta_{6} + 4) q^{47} + (5 \zeta_{6} + 3) q^{49} + 9 \zeta_{6} q^{53} - 5 q^{55} - 3 \zeta_{6} q^{59} + ( - 12 \zeta_{6} + 12) q^{61} + (2 \zeta_{6} - 2) q^{65} - 2 \zeta_{6} q^{67} + 8 q^{71} + 14 \zeta_{6} q^{73} + ( - 15 \zeta_{6} + 5) q^{77} + (\zeta_{6} - 1) q^{79} - 17 q^{83} - 6 q^{85} + ( - 18 \zeta_{6} + 18) q^{89} + ( - 2 \zeta_{6} - 4) q^{91} - 2 \zeta_{6} q^{95} + 3 q^{97} +O(q^{100})$$ q + (z - 1) * q^5 + (-z - 2) * q^7 + 5*z * q^11 + 2 * q^13 + 6*z * q^17 + (2*z - 2) * q^19 + (6*z - 6) * q^23 + 4*z * q^25 + 3 * q^29 - 5*z * q^31 + (-2*z + 3) * q^35 + (-2*z + 2) * q^37 - 8 * q^41 - 4 * q^43 + (-4*z + 4) * q^47 + (5*z + 3) * q^49 + 9*z * q^53 - 5 * q^55 - 3*z * q^59 + (-12*z + 12) * q^61 + (2*z - 2) * q^65 - 2*z * q^67 + 8 * q^71 + 14*z * q^73 + (-15*z + 5) * q^77 + (z - 1) * q^79 - 17 * q^83 - 6 * q^85 + (-18*z + 18) * q^89 + (-2*z - 4) * q^91 - 2*z * q^95 + 3 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{5} - 5 q^{7}+O(q^{10})$$ 2 * q - q^5 - 5 * q^7 $$2 q - q^{5} - 5 q^{7} + 5 q^{11} + 4 q^{13} + 6 q^{17} - 2 q^{19} - 6 q^{23} + 4 q^{25} + 6 q^{29} - 5 q^{31} + 4 q^{35} + 2 q^{37} - 16 q^{41} - 8 q^{43} + 4 q^{47} + 11 q^{49} + 9 q^{53} - 10 q^{55} - 3 q^{59} + 12 q^{61} - 2 q^{65} - 2 q^{67} + 16 q^{71} + 14 q^{73} - 5 q^{77} - q^{79} - 34 q^{83} - 12 q^{85} + 18 q^{89} - 10 q^{91} - 2 q^{95} + 6 q^{97}+O(q^{100})$$ 2 * q - q^5 - 5 * q^7 + 5 * q^11 + 4 * q^13 + 6 * q^17 - 2 * q^19 - 6 * q^23 + 4 * q^25 + 6 * q^29 - 5 * q^31 + 4 * q^35 + 2 * q^37 - 16 * q^41 - 8 * q^43 + 4 * q^47 + 11 * q^49 + 9 * q^53 - 10 * q^55 - 3 * q^59 + 12 * q^61 - 2 * q^65 - 2 * q^67 + 16 * q^71 + 14 * q^73 - 5 * q^77 - q^79 - 34 * q^83 - 12 * q^85 + 18 * q^89 - 10 * q^91 - 2 * q^95 + 6 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/504\mathbb{Z}\right)^\times$$.

 $$n$$ $$73$$ $$127$$ $$253$$ $$281$$ $$\chi(n)$$ $$-1 + \zeta_{6}$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
289.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −0.500000 + 0.866025i 0 −2.50000 0.866025i 0 0 0
361.1 0 0 0 −0.500000 0.866025i 0 −2.50000 + 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.2.s.b 2
3.b odd 2 1 504.2.s.f yes 2
4.b odd 2 1 1008.2.s.h 2
7.b odd 2 1 3528.2.s.r 2
7.c even 3 1 inner 504.2.s.b 2
7.c even 3 1 3528.2.a.o 1
7.d odd 6 1 3528.2.a.h 1
7.d odd 6 1 3528.2.s.r 2
12.b even 2 1 1008.2.s.l 2
21.c even 2 1 3528.2.s.l 2
21.g even 6 1 3528.2.a.s 1
21.g even 6 1 3528.2.s.l 2
21.h odd 6 1 504.2.s.f yes 2
21.h odd 6 1 3528.2.a.l 1
28.f even 6 1 7056.2.a.v 1
28.g odd 6 1 1008.2.s.h 2
28.g odd 6 1 7056.2.a.bm 1
84.j odd 6 1 7056.2.a.bh 1
84.n even 6 1 1008.2.s.l 2
84.n even 6 1 7056.2.a.r 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.s.b 2 1.a even 1 1 trivial
504.2.s.b 2 7.c even 3 1 inner
504.2.s.f yes 2 3.b odd 2 1
504.2.s.f yes 2 21.h odd 6 1
1008.2.s.h 2 4.b odd 2 1
1008.2.s.h 2 28.g odd 6 1
1008.2.s.l 2 12.b even 2 1
1008.2.s.l 2 84.n even 6 1
3528.2.a.h 1 7.d odd 6 1
3528.2.a.l 1 21.h odd 6 1
3528.2.a.o 1 7.c even 3 1
3528.2.a.s 1 21.g even 6 1
3528.2.s.l 2 21.c even 2 1
3528.2.s.l 2 21.g even 6 1
3528.2.s.r 2 7.b odd 2 1
3528.2.s.r 2 7.d odd 6 1
7056.2.a.r 1 84.n even 6 1
7056.2.a.v 1 28.f even 6 1
7056.2.a.bh 1 84.j odd 6 1
7056.2.a.bm 1 28.g odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(504, [\chi])$$:

 $$T_{5}^{2} + T_{5} + 1$$ T5^2 + T5 + 1 $$T_{11}^{2} - 5T_{11} + 25$$ T11^2 - 5*T11 + 25 $$T_{13} - 2$$ T13 - 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2} + 5T + 7$$
$11$ $$T^{2} - 5T + 25$$
$13$ $$(T - 2)^{2}$$
$17$ $$T^{2} - 6T + 36$$
$19$ $$T^{2} + 2T + 4$$
$23$ $$T^{2} + 6T + 36$$
$29$ $$(T - 3)^{2}$$
$31$ $$T^{2} + 5T + 25$$
$37$ $$T^{2} - 2T + 4$$
$41$ $$(T + 8)^{2}$$
$43$ $$(T + 4)^{2}$$
$47$ $$T^{2} - 4T + 16$$
$53$ $$T^{2} - 9T + 81$$
$59$ $$T^{2} + 3T + 9$$
$61$ $$T^{2} - 12T + 144$$
$67$ $$T^{2} + 2T + 4$$
$71$ $$(T - 8)^{2}$$
$73$ $$T^{2} - 14T + 196$$
$79$ $$T^{2} + T + 1$$
$83$ $$(T + 17)^{2}$$
$89$ $$T^{2} - 18T + 324$$
$97$ $$(T - 3)^{2}$$