Properties

Label 504.2.p.c
Level 504
Weight 2
Character orbit 504.p
Analytic conductor 4.024
Analytic rank 0
Dimension 4
CM discriminant -168
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 504.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} -2 q^{4} -\beta_{3} q^{7} -2 \beta_{1} q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} -2 q^{4} -\beta_{3} q^{7} -2 \beta_{1} q^{8} -2 \beta_{3} q^{13} -\beta_{2} q^{14} + 4 q^{16} -2 \beta_{2} q^{17} + 2 \beta_{1} q^{23} -5 q^{25} -2 \beta_{2} q^{26} + 2 \beta_{3} q^{28} -4 \beta_{1} q^{29} -2 \beta_{3} q^{31} + 4 \beta_{1} q^{32} + 4 \beta_{3} q^{34} -2 \beta_{2} q^{41} + 2 q^{43} -4 q^{46} + 7 q^{49} -5 \beta_{1} q^{50} + 4 \beta_{3} q^{52} + 8 \beta_{1} q^{53} + 2 \beta_{2} q^{56} + 8 q^{58} + 4 \beta_{2} q^{59} -2 \beta_{3} q^{61} -2 \beta_{2} q^{62} -8 q^{64} -10 q^{67} + 4 \beta_{2} q^{68} -10 \beta_{1} q^{71} + 4 \beta_{3} q^{82} + 4 \beta_{2} q^{83} + 2 \beta_{1} q^{86} -2 \beta_{2} q^{89} + 14 q^{91} -4 \beta_{1} q^{92} + 7 \beta_{1} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 8q^{4} + O(q^{10}) \) \( 4q - 8q^{4} + 16q^{16} - 20q^{25} + 8q^{43} - 16q^{46} + 28q^{49} + 32q^{58} - 32q^{64} - 40q^{67} + 56q^{91} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 8 x^{2} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 5 \nu \)\()/3\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 11 \nu \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 4\)
\(\nu^{3}\)\(=\)\((\)\(-5 \beta_{2} + 11 \beta_{1}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
1.16372i
2.57794i
1.16372i
2.57794i
1.41421i 0 −2.00000 0 0 −2.64575 2.82843i 0 0
307.2 1.41421i 0 −2.00000 0 0 2.64575 2.82843i 0 0
307.3 1.41421i 0 −2.00000 0 0 −2.64575 2.82843i 0 0
307.4 1.41421i 0 −2.00000 0 0 2.64575 2.82843i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
168.e odd 2 1 CM by \(\Q(\sqrt{-42}) \)
3.b odd 2 1 inner
7.b odd 2 1 inner
8.d odd 2 1 inner
21.c even 2 1 inner
24.f even 2 1 inner
56.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.2.p.c 4
3.b odd 2 1 inner 504.2.p.c 4
4.b odd 2 1 2016.2.p.c 4
7.b odd 2 1 inner 504.2.p.c 4
8.b even 2 1 2016.2.p.c 4
8.d odd 2 1 inner 504.2.p.c 4
12.b even 2 1 2016.2.p.c 4
21.c even 2 1 inner 504.2.p.c 4
24.f even 2 1 inner 504.2.p.c 4
24.h odd 2 1 2016.2.p.c 4
28.d even 2 1 2016.2.p.c 4
56.e even 2 1 inner 504.2.p.c 4
56.h odd 2 1 2016.2.p.c 4
84.h odd 2 1 2016.2.p.c 4
168.e odd 2 1 CM 504.2.p.c 4
168.i even 2 1 2016.2.p.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.p.c 4 1.a even 1 1 trivial
504.2.p.c 4 3.b odd 2 1 inner
504.2.p.c 4 7.b odd 2 1 inner
504.2.p.c 4 8.d odd 2 1 inner
504.2.p.c 4 21.c even 2 1 inner
504.2.p.c 4 24.f even 2 1 inner
504.2.p.c 4 56.e even 2 1 inner
504.2.p.c 4 168.e odd 2 1 CM
2016.2.p.c 4 4.b odd 2 1
2016.2.p.c 4 8.b even 2 1
2016.2.p.c 4 12.b even 2 1
2016.2.p.c 4 24.h odd 2 1
2016.2.p.c 4 28.d even 2 1
2016.2.p.c 4 56.h odd 2 1
2016.2.p.c 4 84.h odd 2 1
2016.2.p.c 4 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(504, [\chi])\):

\( T_{5} \)
\( T_{11} \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 2 T^{2} )^{2} \)
$3$ \( \)
$5$ \( ( 1 + 5 T^{2} )^{4} \)
$7$ \( ( 1 - 7 T^{2} )^{2} \)
$11$ \( ( 1 + 11 T^{2} )^{4} \)
$13$ \( ( 1 - 2 T^{2} + 169 T^{4} )^{2} \)
$17$ \( ( 1 + 22 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 - 19 T^{2} )^{4} \)
$23$ \( ( 1 - 38 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 - 26 T^{2} + 841 T^{4} )^{2} \)
$31$ \( ( 1 + 34 T^{2} + 961 T^{4} )^{2} \)
$37$ \( ( 1 - 37 T^{2} )^{4} \)
$41$ \( ( 1 - 26 T^{2} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 - 2 T + 43 T^{2} )^{4} \)
$47$ \( ( 1 + 47 T^{2} )^{4} \)
$53$ \( ( 1 + 22 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 + 106 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 + 94 T^{2} + 3721 T^{4} )^{2} \)
$67$ \( ( 1 + 10 T + 67 T^{2} )^{4} \)
$71$ \( ( 1 + 58 T^{2} + 5041 T^{4} )^{2} \)
$73$ \( ( 1 - 73 T^{2} )^{4} \)
$79$ \( ( 1 - 79 T^{2} )^{4} \)
$83$ \( ( 1 + 58 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 - 122 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 - 97 T^{2} )^{4} \)
show more
show less