Properties

Label 504.2.cs
Level $504$
Weight $2$
Character orbit 504.cs
Rep. character $\chi_{504}(85,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $144$
Newform subspaces $2$
Sturm bound $192$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 200 144 56
Cusp forms 184 144 40
Eisenstein series 16 0 16

Trace form

\( 144 q - 6 q^{6} + 12 q^{8} + 12 q^{12} - 22 q^{18} + 14 q^{20} + 24 q^{23} - 2 q^{24} + 72 q^{25} - 56 q^{26} - 56 q^{30} - 10 q^{32} + 16 q^{33} + 12 q^{34} - 28 q^{38} - 24 q^{39} + 12 q^{40} - 8 q^{41}+ \cdots - 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.cs.a 504.cs 72.n $72$ $4.024$ None 504.2.cs.a \(0\) \(0\) \(0\) \(36\) $\mathrm{SU}(2)[C_{6}]$
504.2.cs.b 504.cs 72.n $72$ $4.024$ None 504.2.cs.b \(0\) \(0\) \(0\) \(-36\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)