Properties

Label 504.2.cj.c.37.4
Level $504$
Weight $2$
Character 504.37
Analytic conductor $4.024$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(37,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 37.4
Root \(-0.0950561 + 1.41102i\) of defining polynomial
Character \(\chi\) \(=\) 504.37
Dual form 504.2.cj.c.109.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.453773 + 1.33944i) q^{2} +(-1.58818 + 1.21560i) q^{4} +(-0.476087 - 0.274869i) q^{5} +(-2.60755 - 0.447998i) q^{7} +(-2.34889 - 1.57566i) q^{8} +(0.152134 - 0.762416i) q^{10} +(-2.07045 + 1.19538i) q^{11} +3.96641i q^{13} +(-0.583170 - 3.69593i) q^{14} +(1.04463 - 3.86119i) q^{16} +(-2.10755 - 3.65038i) q^{17} +(-5.75174 - 3.32077i) q^{19} +(1.09024 - 0.142191i) q^{20} +(-2.54065 - 2.23081i) q^{22} +(-1.17445 + 2.03420i) q^{23} +(-2.34889 - 4.06840i) q^{25} +(-5.31275 + 1.79985i) q^{26} +(4.68584 - 2.45823i) q^{28} +8.21720i q^{29} +(-0.433099 - 0.750150i) q^{31} +(5.64584 - 0.352893i) q^{32} +(3.93310 - 4.47937i) q^{34} +(1.11828 + 0.930019i) q^{35} +(0.229805 + 0.132678i) q^{37} +(1.83797 - 9.21097i) q^{38} +(0.685178 + 1.39579i) q^{40} +6.24970 q^{41} +5.35027i q^{43} +(1.83515 - 4.41531i) q^{44} +(-3.25762 - 0.650030i) q^{46} +(1.29930 - 2.25045i) q^{47} +(6.59859 + 2.33635i) q^{49} +(4.38350 - 4.99233i) q^{50} +(-4.82157 - 6.29937i) q^{52} +(-9.36933 + 5.40939i) q^{53} +1.31429 q^{55} +(5.41896 + 5.16090i) q^{56} +(-11.0064 + 3.72875i) q^{58} +(-3.26891 + 1.88730i) q^{59} +(6.18061 + 3.56837i) q^{61} +(0.808249 - 0.920507i) q^{62} +(3.03461 + 7.40210i) q^{64} +(1.09024 - 1.88835i) q^{65} +(-2.31673 + 1.33757i) q^{67} +(7.78456 + 3.23552i) q^{68} +(-0.738257 + 1.91988i) q^{70} -8.76700 q^{71} +(-2.33159 - 4.03843i) q^{73} +(-0.0734343 + 0.368015i) q^{74} +(13.1715 - 1.71785i) q^{76} +(5.93432 - 2.18944i) q^{77} +(-0.308249 + 0.533903i) q^{79} +(-1.55865 + 1.55112i) q^{80} +(2.83595 + 8.37108i) q^{82} -1.09948i q^{83} +2.31720i q^{85} +(-7.16634 + 2.42781i) q^{86} +(6.74677 + 0.454511i) q^{88} +(-3.19779 + 5.53873i) q^{89} +(1.77694 - 10.3426i) q^{91} +(-0.607546 - 4.65834i) q^{92} +(3.60392 + 0.719132i) q^{94} +(1.82555 + 3.16195i) q^{95} +12.9475 q^{97} +(-0.135129 + 9.89857i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 4 q^{7} - 4 q^{8} - 8 q^{10} + 16 q^{14} + 8 q^{16} + 2 q^{17} - 8 q^{20} + 12 q^{22} - 2 q^{23} - 4 q^{25} + 2 q^{26} + 26 q^{28} + 10 q^{31} + 12 q^{32} + 32 q^{34} - 18 q^{38} + 10 q^{40}+ \cdots - 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.453773 + 1.33944i 0.320866 + 0.947124i
\(3\) 0 0
\(4\) −1.58818 + 1.21560i −0.794090 + 0.607801i
\(5\) −0.476087 0.274869i −0.212913 0.122925i 0.389752 0.920920i \(-0.372561\pi\)
−0.602664 + 0.797995i \(0.705894\pi\)
\(6\) 0 0
\(7\) −2.60755 0.447998i −0.985560 0.169327i
\(8\) −2.34889 1.57566i −0.830460 0.557079i
\(9\) 0 0
\(10\) 0.152134 0.762416i 0.0481089 0.241097i
\(11\) −2.07045 + 1.19538i −0.624265 + 0.360419i −0.778527 0.627611i \(-0.784033\pi\)
0.154263 + 0.988030i \(0.450700\pi\)
\(12\) 0 0
\(13\) 3.96641i 1.10008i 0.835137 + 0.550042i \(0.185388\pi\)
−0.835137 + 0.550042i \(0.814612\pi\)
\(14\) −0.583170 3.69593i −0.155859 0.987779i
\(15\) 0 0
\(16\) 1.04463 3.86119i 0.261157 0.965296i
\(17\) −2.10755 3.65038i −0.511155 0.885347i −0.999916 0.0129290i \(-0.995884\pi\)
0.488761 0.872418i \(-0.337449\pi\)
\(18\) 0 0
\(19\) −5.75174 3.32077i −1.31954 0.761837i −0.335886 0.941903i \(-0.609036\pi\)
−0.983655 + 0.180066i \(0.942369\pi\)
\(20\) 1.09024 0.142191i 0.243786 0.0317948i
\(21\) 0 0
\(22\) −2.54065 2.23081i −0.541667 0.475610i
\(23\) −1.17445 + 2.03420i −0.244889 + 0.424160i −0.962100 0.272695i \(-0.912085\pi\)
0.717211 + 0.696856i \(0.245418\pi\)
\(24\) 0 0
\(25\) −2.34889 4.06840i −0.469779 0.813681i
\(26\) −5.31275 + 1.79985i −1.04192 + 0.352980i
\(27\) 0 0
\(28\) 4.68584 2.45823i 0.885540 0.464563i
\(29\) 8.21720i 1.52590i 0.646460 + 0.762948i \(0.276249\pi\)
−0.646460 + 0.762948i \(0.723751\pi\)
\(30\) 0 0
\(31\) −0.433099 0.750150i −0.0777869 0.134731i 0.824508 0.565850i \(-0.191452\pi\)
−0.902295 + 0.431120i \(0.858119\pi\)
\(32\) 5.64584 0.352893i 0.998052 0.0623832i
\(33\) 0 0
\(34\) 3.93310 4.47937i 0.674521 0.768205i
\(35\) 1.11828 + 0.930019i 0.189023 + 0.157202i
\(36\) 0 0
\(37\) 0.229805 + 0.132678i 0.0377797 + 0.0218121i 0.518771 0.854913i \(-0.326390\pi\)
−0.480991 + 0.876725i \(0.659723\pi\)
\(38\) 1.83797 9.21097i 0.298158 1.49422i
\(39\) 0 0
\(40\) 0.685178 + 1.39579i 0.108336 + 0.220693i
\(41\) 6.24970 0.976039 0.488020 0.872833i \(-0.337719\pi\)
0.488020 + 0.872833i \(0.337719\pi\)
\(42\) 0 0
\(43\) 5.35027i 0.815908i 0.913003 + 0.407954i \(0.133758\pi\)
−0.913003 + 0.407954i \(0.866242\pi\)
\(44\) 1.83515 4.41531i 0.276659 0.665634i
\(45\) 0 0
\(46\) −3.25762 0.650030i −0.480309 0.0958417i
\(47\) 1.29930 2.25045i 0.189522 0.328262i −0.755569 0.655069i \(-0.772639\pi\)
0.945091 + 0.326807i \(0.105973\pi\)
\(48\) 0 0
\(49\) 6.59859 + 2.33635i 0.942656 + 0.333765i
\(50\) 4.38350 4.99233i 0.619921 0.706022i
\(51\) 0 0
\(52\) −4.82157 6.29937i −0.668632 0.873565i
\(53\) −9.36933 + 5.40939i −1.28698 + 0.743037i −0.978114 0.208070i \(-0.933282\pi\)
−0.308863 + 0.951107i \(0.599948\pi\)
\(54\) 0 0
\(55\) 1.31429 0.177218
\(56\) 5.41896 + 5.16090i 0.724139 + 0.689654i
\(57\) 0 0
\(58\) −11.0064 + 3.72875i −1.44521 + 0.489608i
\(59\) −3.26891 + 1.88730i −0.425575 + 0.245706i −0.697460 0.716624i \(-0.745686\pi\)
0.271884 + 0.962330i \(0.412353\pi\)
\(60\) 0 0
\(61\) 6.18061 + 3.56837i 0.791345 + 0.456884i 0.840436 0.541911i \(-0.182299\pi\)
−0.0490905 + 0.998794i \(0.515632\pi\)
\(62\) 0.808249 0.920507i 0.102648 0.116904i
\(63\) 0 0
\(64\) 3.03461 + 7.40210i 0.379326 + 0.925263i
\(65\) 1.09024 1.88835i 0.135228 0.234222i
\(66\) 0 0
\(67\) −2.31673 + 1.33757i −0.283034 + 0.163410i −0.634796 0.772680i \(-0.718916\pi\)
0.351762 + 0.936089i \(0.385583\pi\)
\(68\) 7.78456 + 3.23552i 0.944017 + 0.392364i
\(69\) 0 0
\(70\) −0.738257 + 1.91988i −0.0882386 + 0.229470i
\(71\) −8.76700 −1.04045 −0.520226 0.854029i \(-0.674152\pi\)
−0.520226 + 0.854029i \(0.674152\pi\)
\(72\) 0 0
\(73\) −2.33159 4.03843i −0.272892 0.472663i 0.696709 0.717354i \(-0.254647\pi\)
−0.969601 + 0.244691i \(0.921313\pi\)
\(74\) −0.0734343 + 0.368015i −0.00853657 + 0.0427809i
\(75\) 0 0
\(76\) 13.1715 1.71785i 1.51088 0.197051i
\(77\) 5.93432 2.18944i 0.676279 0.249510i
\(78\) 0 0
\(79\) −0.308249 + 0.533903i −0.0346807 + 0.0600687i −0.882845 0.469665i \(-0.844375\pi\)
0.848164 + 0.529734i \(0.177708\pi\)
\(80\) −1.55865 + 1.55112i −0.174263 + 0.173421i
\(81\) 0 0
\(82\) 2.83595 + 8.37108i 0.313178 + 0.924431i
\(83\) 1.09948i 0.120683i −0.998178 0.0603416i \(-0.980781\pi\)
0.998178 0.0603416i \(-0.0192190\pi\)
\(84\) 0 0
\(85\) 2.31720i 0.251335i
\(86\) −7.16634 + 2.42781i −0.772766 + 0.261797i
\(87\) 0 0
\(88\) 6.74677 + 0.454511i 0.719208 + 0.0484510i
\(89\) −3.19779 + 5.53873i −0.338965 + 0.587104i −0.984238 0.176847i \(-0.943410\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(90\) 0 0
\(91\) 1.77694 10.3426i 0.186274 1.08420i
\(92\) −0.607546 4.65834i −0.0633411 0.485665i
\(93\) 0 0
\(94\) 3.60392 + 0.719132i 0.371716 + 0.0741728i
\(95\) 1.82555 + 3.16195i 0.187298 + 0.324409i
\(96\) 0 0
\(97\) 12.9475 1.31462 0.657309 0.753621i \(-0.271695\pi\)
0.657309 + 0.753621i \(0.271695\pi\)
\(98\) −0.135129 + 9.89857i −0.0136501 + 0.999907i
\(99\) 0 0
\(100\) 8.67602 + 3.60604i 0.867602 + 0.360604i
\(101\) 13.7565 7.94233i 1.36882 0.790291i 0.378047 0.925787i \(-0.376596\pi\)
0.990778 + 0.135495i \(0.0432625\pi\)
\(102\) 0 0
\(103\) −9.38954 + 16.2632i −0.925179 + 1.60246i −0.133906 + 0.990994i \(0.542752\pi\)
−0.791273 + 0.611463i \(0.790581\pi\)
\(104\) 6.24970 9.31667i 0.612834 0.913575i
\(105\) 0 0
\(106\) −11.4971 10.0950i −1.11670 0.980512i
\(107\) 0.293506 + 0.169456i 0.0283743 + 0.0163819i 0.514120 0.857718i \(-0.328119\pi\)
−0.485746 + 0.874100i \(0.661452\pi\)
\(108\) 0 0
\(109\) −6.75910 + 3.90237i −0.647404 + 0.373779i −0.787461 0.616365i \(-0.788605\pi\)
0.140057 + 0.990143i \(0.455271\pi\)
\(110\) 0.596388 + 1.76040i 0.0568634 + 0.167848i
\(111\) 0 0
\(112\) −4.45372 + 9.60023i −0.420837 + 0.907136i
\(113\) −2.51730 −0.236808 −0.118404 0.992966i \(-0.537778\pi\)
−0.118404 + 0.992966i \(0.537778\pi\)
\(114\) 0 0
\(115\) 1.11828 0.645638i 0.104280 0.0602060i
\(116\) −9.98884 13.0504i −0.927440 1.21170i
\(117\) 0 0
\(118\) −4.01127 3.52208i −0.369267 0.324234i
\(119\) 3.86016 + 10.4627i 0.353860 + 0.959115i
\(120\) 0 0
\(121\) −2.64215 + 4.57635i −0.240196 + 0.416031i
\(122\) −1.97502 + 9.89776i −0.178809 + 0.896101i
\(123\) 0 0
\(124\) 1.59972 + 0.664896i 0.143659 + 0.0597095i
\(125\) 5.33124i 0.476841i
\(126\) 0 0
\(127\) −5.30221 −0.470495 −0.235248 0.971935i \(-0.575590\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(128\) −8.53762 + 7.42354i −0.754626 + 0.656155i
\(129\) 0 0
\(130\) 3.02405 + 0.603425i 0.265227 + 0.0529238i
\(131\) −8.69419 5.01959i −0.759615 0.438564i 0.0695425 0.997579i \(-0.477846\pi\)
−0.829157 + 0.559015i \(0.811179\pi\)
\(132\) 0 0
\(133\) 13.5102 + 11.2358i 1.17149 + 0.974270i
\(134\) −2.84286 2.49616i −0.245585 0.215636i
\(135\) 0 0
\(136\) −0.801340 + 11.8951i −0.0687144 + 1.02000i
\(137\) 1.62485 + 2.81432i 0.138820 + 0.240444i 0.927050 0.374937i \(-0.122336\pi\)
−0.788230 + 0.615381i \(0.789002\pi\)
\(138\) 0 0
\(139\) 15.3349i 1.30069i −0.759639 0.650346i \(-0.774624\pi\)
0.759639 0.650346i \(-0.225376\pi\)
\(140\) −2.90656 0.117658i −0.245649 0.00994390i
\(141\) 0 0
\(142\) −3.97823 11.7428i −0.333846 0.985438i
\(143\) −4.74135 8.21226i −0.396491 0.686743i
\(144\) 0 0
\(145\) 2.25865 3.91210i 0.187571 0.324882i
\(146\) 4.35121 4.95555i 0.360109 0.410124i
\(147\) 0 0
\(148\) −0.526255 + 0.0686349i −0.0432579 + 0.00564175i
\(149\) 6.39393 + 3.69154i 0.523812 + 0.302423i 0.738493 0.674261i \(-0.235538\pi\)
−0.214681 + 0.976684i \(0.568871\pi\)
\(150\) 0 0
\(151\) −4.16550 7.21485i −0.338983 0.587136i 0.645259 0.763964i \(-0.276750\pi\)
−0.984242 + 0.176828i \(0.943416\pi\)
\(152\) 8.27784 + 16.8629i 0.671422 + 1.36776i
\(153\) 0 0
\(154\) 5.62545 + 6.95514i 0.453312 + 0.560461i
\(155\) 0.476182i 0.0382478i
\(156\) 0 0
\(157\) 6.18061 3.56837i 0.493266 0.284787i −0.232662 0.972558i \(-0.574744\pi\)
0.725928 + 0.687770i \(0.241410\pi\)
\(158\) −0.855004 0.170609i −0.0680204 0.0135729i
\(159\) 0 0
\(160\) −2.78491 1.38386i −0.220166 0.109404i
\(161\) 3.97374 4.77813i 0.313175 0.376569i
\(162\) 0 0
\(163\) −6.33023 3.65476i −0.495822 0.286263i 0.231164 0.972915i \(-0.425746\pi\)
−0.726987 + 0.686652i \(0.759080\pi\)
\(164\) −9.92564 + 7.59714i −0.775063 + 0.593237i
\(165\) 0 0
\(166\) 1.47268 0.498913i 0.114302 0.0387231i
\(167\) −1.88873 −0.146154 −0.0730772 0.997326i \(-0.523282\pi\)
−0.0730772 + 0.997326i \(0.523282\pi\)
\(168\) 0 0
\(169\) −2.73240 −0.210184
\(170\) −3.10374 + 1.05148i −0.238046 + 0.0806450i
\(171\) 0 0
\(172\) −6.50379 8.49718i −0.495909 0.647904i
\(173\) −14.3350 8.27632i −1.08987 0.629237i −0.156329 0.987705i \(-0.549966\pi\)
−0.933542 + 0.358468i \(0.883299\pi\)
\(174\) 0 0
\(175\) 4.30221 + 11.6609i 0.325217 + 0.881478i
\(176\) 2.45272 + 9.24312i 0.184881 + 0.696726i
\(177\) 0 0
\(178\) −8.86985 1.76990i −0.664823 0.132660i
\(179\) 4.79957 2.77103i 0.358737 0.207117i −0.309790 0.950805i \(-0.600259\pi\)
0.668526 + 0.743688i \(0.266925\pi\)
\(180\) 0 0
\(181\) 9.98466i 0.742154i −0.928602 0.371077i \(-0.878989\pi\)
0.928602 0.371077i \(-0.121011\pi\)
\(182\) 14.6596 2.31309i 1.08664 0.171458i
\(183\) 0 0
\(184\) 5.96386 2.92760i 0.439661 0.215825i
\(185\) −0.0729381 0.126333i −0.00536252 0.00928816i
\(186\) 0 0
\(187\) 8.72714 + 5.03862i 0.638192 + 0.368460i
\(188\) 0.672132 + 5.15354i 0.0490202 + 0.375861i
\(189\) 0 0
\(190\) −3.40684 + 3.88002i −0.247158 + 0.281486i
\(191\) 0.0842049 0.145847i 0.00609285 0.0105531i −0.862963 0.505267i \(-0.831394\pi\)
0.869056 + 0.494714i \(0.164727\pi\)
\(192\) 0 0
\(193\) −3.75865 6.51018i −0.270554 0.468613i 0.698450 0.715659i \(-0.253873\pi\)
−0.969004 + 0.247046i \(0.920540\pi\)
\(194\) 5.87523 + 17.3423i 0.421817 + 1.24511i
\(195\) 0 0
\(196\) −13.3198 + 4.31071i −0.951416 + 0.307908i
\(197\) 1.34581i 0.0958847i 0.998850 + 0.0479424i \(0.0152664\pi\)
−0.998850 + 0.0479424i \(0.984734\pi\)
\(198\) 0 0
\(199\) 6.38059 + 11.0515i 0.452308 + 0.783420i 0.998529 0.0542208i \(-0.0172675\pi\)
−0.546221 + 0.837641i \(0.683934\pi\)
\(200\) −0.893107 + 13.2573i −0.0631522 + 0.937433i
\(201\) 0 0
\(202\) 16.8806 + 14.8220i 1.18771 + 1.04287i
\(203\) 3.68129 21.4267i 0.258376 1.50386i
\(204\) 0 0
\(205\) −2.97540 1.71785i −0.207811 0.119980i
\(206\) −26.0442 5.19690i −1.81458 0.362085i
\(207\) 0 0
\(208\) 15.3150 + 4.14342i 1.06191 + 0.287294i
\(209\) 15.8783 1.09832
\(210\) 0 0
\(211\) 8.46353i 0.582653i 0.956624 + 0.291327i \(0.0940967\pi\)
−0.956624 + 0.291327i \(0.905903\pi\)
\(212\) 8.30452 19.9805i 0.570357 1.37226i
\(213\) 0 0
\(214\) −0.0937901 + 0.470028i −0.00641136 + 0.0321304i
\(215\) 1.47062 2.54719i 0.100296 0.173717i
\(216\) 0 0
\(217\) 0.793260 + 2.15008i 0.0538500 + 0.145957i
\(218\) −8.29407 7.28259i −0.561745 0.493239i
\(219\) 0 0
\(220\) −2.08732 + 1.59765i −0.140727 + 0.107713i
\(221\) 14.4789 8.35939i 0.973955 0.562313i
\(222\) 0 0
\(223\) −5.80161 −0.388505 −0.194252 0.980952i \(-0.562228\pi\)
−0.194252 + 0.980952i \(0.562228\pi\)
\(224\) −14.8799 1.60914i −0.994203 0.107515i
\(225\) 0 0
\(226\) −1.14229 3.37177i −0.0759837 0.224287i
\(227\) 9.89265 5.71152i 0.656598 0.379087i −0.134382 0.990930i \(-0.542905\pi\)
0.790980 + 0.611843i \(0.209571\pi\)
\(228\) 0 0
\(229\) −16.0260 9.25263i −1.05903 0.611431i −0.133866 0.990999i \(-0.542739\pi\)
−0.925164 + 0.379568i \(0.876072\pi\)
\(230\) 1.37224 + 1.20489i 0.0904825 + 0.0794480i
\(231\) 0 0
\(232\) 12.9475 19.3013i 0.850044 1.26719i
\(233\) −5.52566 + 9.57072i −0.361998 + 0.626999i −0.988290 0.152590i \(-0.951239\pi\)
0.626292 + 0.779589i \(0.284572\pi\)
\(234\) 0 0
\(235\) −1.23716 + 0.714273i −0.0807032 + 0.0465940i
\(236\) 2.89740 6.97106i 0.188605 0.453778i
\(237\) 0 0
\(238\) −12.2625 + 9.91814i −0.794859 + 0.642897i
\(239\) 22.6107 1.46256 0.731281 0.682076i \(-0.238923\pi\)
0.731281 + 0.682076i \(0.238923\pi\)
\(240\) 0 0
\(241\) −6.96479 12.0634i −0.448642 0.777070i 0.549656 0.835391i \(-0.314759\pi\)
−0.998298 + 0.0583207i \(0.981425\pi\)
\(242\) −7.32866 1.46237i −0.471104 0.0940049i
\(243\) 0 0
\(244\) −14.1536 + 1.84593i −0.906093 + 0.118174i
\(245\) −2.49931 2.92606i −0.159675 0.186939i
\(246\) 0 0
\(247\) 13.1715 22.8138i 0.838085 1.45161i
\(248\) −0.164675 + 2.44444i −0.0104569 + 0.155222i
\(249\) 0 0
\(250\) −7.14086 + 2.41918i −0.451627 + 0.153002i
\(251\) 0.706033i 0.0445644i −0.999752 0.0222822i \(-0.992907\pi\)
0.999752 0.0222822i \(-0.00709323\pi\)
\(252\) 0 0
\(253\) 5.61562i 0.353051i
\(254\) −2.40600 7.10197i −0.150966 0.445618i
\(255\) 0 0
\(256\) −13.8175 8.06700i −0.863594 0.504187i
\(257\) 10.3919 17.9992i 0.648226 1.12276i −0.335320 0.942104i \(-0.608844\pi\)
0.983546 0.180656i \(-0.0578222\pi\)
\(258\) 0 0
\(259\) −0.539788 0.448917i −0.0335408 0.0278943i
\(260\) 0.563987 + 4.32435i 0.0349770 + 0.268185i
\(261\) 0 0
\(262\) 2.77823 13.9231i 0.171640 0.860170i
\(263\) −11.3895 19.7273i −0.702309 1.21644i −0.967654 0.252281i \(-0.918819\pi\)
0.265345 0.964154i \(-0.414514\pi\)
\(264\) 0 0
\(265\) 5.94749 0.365351
\(266\) −8.91910 + 23.1946i −0.546865 + 1.42215i
\(267\) 0 0
\(268\) 2.05344 4.94052i 0.125434 0.301790i
\(269\) 2.59376 1.49751i 0.158145 0.0913048i −0.418839 0.908060i \(-0.637563\pi\)
0.576984 + 0.816756i \(0.304230\pi\)
\(270\) 0 0
\(271\) 12.5926 21.8109i 0.764943 1.32492i −0.175333 0.984509i \(-0.556100\pi\)
0.940277 0.340412i \(-0.110566\pi\)
\(272\) −16.2964 + 4.32435i −0.988113 + 0.262202i
\(273\) 0 0
\(274\) −3.03229 + 3.45345i −0.183188 + 0.208630i
\(275\) 9.72654 + 5.61562i 0.586533 + 0.338635i
\(276\) 0 0
\(277\) −8.17940 + 4.72238i −0.491453 + 0.283740i −0.725177 0.688563i \(-0.758242\pi\)
0.233724 + 0.972303i \(0.424909\pi\)
\(278\) 20.5402 6.95858i 1.23192 0.417348i
\(279\) 0 0
\(280\) −1.16132 3.94654i −0.0694024 0.235851i
\(281\) −26.8425 −1.60129 −0.800644 0.599141i \(-0.795509\pi\)
−0.800644 + 0.599141i \(0.795509\pi\)
\(282\) 0 0
\(283\) −11.2429 + 6.49111i −0.668323 + 0.385856i −0.795441 0.606031i \(-0.792761\pi\)
0.127118 + 0.991888i \(0.459427\pi\)
\(284\) 13.9236 10.6572i 0.826212 0.632387i
\(285\) 0 0
\(286\) 8.84830 10.0772i 0.523211 0.595880i
\(287\) −16.2964 2.79986i −0.961945 0.165270i
\(288\) 0 0
\(289\) −0.383502 + 0.664245i −0.0225590 + 0.0390733i
\(290\) 6.26493 + 1.25011i 0.367889 + 0.0734092i
\(291\) 0 0
\(292\) 8.61211 + 3.57947i 0.503985 + 0.209473i
\(293\) 9.56300i 0.558677i −0.960193 0.279338i \(-0.909885\pi\)
0.960193 0.279338i \(-0.0901151\pi\)
\(294\) 0 0
\(295\) 2.07504 0.120814
\(296\) −0.330733 0.673741i −0.0192235 0.0391604i
\(297\) 0 0
\(298\) −2.04318 + 10.2394i −0.118358 + 0.593152i
\(299\) −8.06848 4.65834i −0.466612 0.269399i
\(300\) 0 0
\(301\) 2.39691 13.9511i 0.138156 0.804126i
\(302\) 7.77364 8.85332i 0.447323 0.509452i
\(303\) 0 0
\(304\) −18.8305 + 18.7396i −1.08001 + 1.07479i
\(305\) −1.96167 3.39771i −0.112325 0.194552i
\(306\) 0 0
\(307\) 12.2217i 0.697527i −0.937211 0.348763i \(-0.886602\pi\)
0.937211 0.348763i \(-0.113398\pi\)
\(308\) −6.76329 + 10.6910i −0.385374 + 0.609176i
\(309\) 0 0
\(310\) −0.637815 + 0.216079i −0.0362255 + 0.0122724i
\(311\) 15.9415 + 27.6114i 0.903957 + 1.56570i 0.822311 + 0.569038i \(0.192684\pi\)
0.0816453 + 0.996661i \(0.473983\pi\)
\(312\) 0 0
\(313\) −10.7618 + 18.6399i −0.608291 + 1.05359i 0.383230 + 0.923653i \(0.374811\pi\)
−0.991522 + 0.129939i \(0.958522\pi\)
\(314\) 7.58420 + 6.65929i 0.428001 + 0.375806i
\(315\) 0 0
\(316\) −0.159458 1.22264i −0.00897023 0.0687789i
\(317\) −20.0481 11.5747i −1.12601 0.650103i −0.183082 0.983098i \(-0.558607\pi\)
−0.942929 + 0.332995i \(0.891941\pi\)
\(318\) 0 0
\(319\) −9.82264 17.0133i −0.549962 0.952562i
\(320\) 0.589871 4.35816i 0.0329748 0.243629i
\(321\) 0 0
\(322\) 8.20317 + 3.15439i 0.457145 + 0.175787i
\(323\) 27.9947i 1.55767i
\(324\) 0 0
\(325\) 16.1370 9.31667i 0.895117 0.516796i
\(326\) 2.02283 10.1374i 0.112034 0.561457i
\(327\) 0 0
\(328\) −14.6799 9.84739i −0.810561 0.543731i
\(329\) −4.39618 + 5.28607i −0.242369 + 0.291430i
\(330\) 0 0
\(331\) 25.5615 + 14.7579i 1.40499 + 0.811169i 0.994899 0.100878i \(-0.0321652\pi\)
0.410086 + 0.912047i \(0.365499\pi\)
\(332\) 1.33652 + 1.74616i 0.0733513 + 0.0958332i
\(333\) 0 0
\(334\) −0.857056 2.52984i −0.0468960 0.138426i
\(335\) 1.47062 0.0803486
\(336\) 0 0
\(337\) −3.28431 −0.178908 −0.0894538 0.995991i \(-0.528512\pi\)
−0.0894538 + 0.995991i \(0.528512\pi\)
\(338\) −1.23989 3.65987i −0.0674411 0.199071i
\(339\) 0 0
\(340\) −2.81679 3.68012i −0.152762 0.199583i
\(341\) 1.79342 + 1.03543i 0.0971192 + 0.0560718i
\(342\) 0 0
\(343\) −16.1595 9.04831i −0.872529 0.488563i
\(344\) 8.43018 12.5672i 0.454525 0.677578i
\(345\) 0 0
\(346\) 4.58076 22.9564i 0.246263 1.23414i
\(347\) −27.4329 + 15.8384i −1.47267 + 0.850248i −0.999528 0.0307361i \(-0.990215\pi\)
−0.473146 + 0.880984i \(0.656882\pi\)
\(348\) 0 0
\(349\) 28.4807i 1.52454i 0.647260 + 0.762269i \(0.275915\pi\)
−0.647260 + 0.762269i \(0.724085\pi\)
\(350\) −13.6667 + 11.0539i −0.730518 + 0.590857i
\(351\) 0 0
\(352\) −11.2676 + 7.47954i −0.600565 + 0.398661i
\(353\) 10.1196 + 17.5277i 0.538613 + 0.932905i 0.998979 + 0.0451760i \(0.0143849\pi\)
−0.460366 + 0.887729i \(0.652282\pi\)
\(354\) 0 0
\(355\) 4.17386 + 2.40978i 0.221525 + 0.127898i
\(356\) −1.65423 12.6837i −0.0876740 0.672237i
\(357\) 0 0
\(358\) 5.88954 + 5.17130i 0.311272 + 0.273312i
\(359\) 12.5611 21.7564i 0.662948 1.14826i −0.316889 0.948463i \(-0.602638\pi\)
0.979837 0.199797i \(-0.0640283\pi\)
\(360\) 0 0
\(361\) 12.5550 + 21.7460i 0.660791 + 1.14452i
\(362\) 13.3738 4.53077i 0.702912 0.238132i
\(363\) 0 0
\(364\) 9.75036 + 18.5859i 0.511058 + 0.974168i
\(365\) 2.56353i 0.134181i
\(366\) 0 0
\(367\) 15.1912 + 26.3118i 0.792972 + 1.37347i 0.924119 + 0.382104i \(0.124801\pi\)
−0.131147 + 0.991363i \(0.541866\pi\)
\(368\) 6.62757 + 6.65974i 0.345486 + 0.347163i
\(369\) 0 0
\(370\) 0.136117 0.155022i 0.00707639 0.00805923i
\(371\) 26.8544 9.90778i 1.39421 0.514386i
\(372\) 0 0
\(373\) −4.86327 2.80781i −0.251811 0.145383i 0.368782 0.929516i \(-0.379775\pi\)
−0.620593 + 0.784133i \(0.713108\pi\)
\(374\) −2.78876 + 13.9758i −0.144203 + 0.722674i
\(375\) 0 0
\(376\) −6.59785 + 3.23882i −0.340258 + 0.167029i
\(377\) −32.5928 −1.67861
\(378\) 0 0
\(379\) 8.07009i 0.414533i 0.978285 + 0.207266i \(0.0664566\pi\)
−0.978285 + 0.207266i \(0.933543\pi\)
\(380\) −6.74298 2.80260i −0.345907 0.143770i
\(381\) 0 0
\(382\) 0.233563 + 0.0466055i 0.0119501 + 0.00238455i
\(383\) −12.8166 + 22.1990i −0.654898 + 1.13432i 0.327022 + 0.945017i \(0.393955\pi\)
−0.981919 + 0.189299i \(0.939378\pi\)
\(384\) 0 0
\(385\) −3.42706 0.588798i −0.174659 0.0300079i
\(386\) 7.01439 7.98862i 0.357023 0.406610i
\(387\) 0 0
\(388\) −20.5629 + 15.7390i −1.04392 + 0.799026i
\(389\) −22.9905 + 13.2736i −1.16566 + 0.672997i −0.952655 0.304053i \(-0.901660\pi\)
−0.213010 + 0.977050i \(0.568327\pi\)
\(390\) 0 0
\(391\) 9.90081 0.500705
\(392\) −11.8181 15.8850i −0.596905 0.802312i
\(393\) 0 0
\(394\) −1.80262 + 0.610691i −0.0908148 + 0.0307662i
\(395\) 0.293506 0.169456i 0.0147679 0.00852626i
\(396\) 0 0
\(397\) −29.5283 17.0482i −1.48198 0.855624i −0.482192 0.876065i \(-0.660159\pi\)
−0.999791 + 0.0204418i \(0.993493\pi\)
\(398\) −11.9074 + 13.5613i −0.596866 + 0.679765i
\(399\) 0 0
\(400\) −18.1626 + 4.81955i −0.908129 + 0.240978i
\(401\) 9.17676 15.8946i 0.458266 0.793739i −0.540604 0.841277i \(-0.681804\pi\)
0.998869 + 0.0475379i \(0.0151375\pi\)
\(402\) 0 0
\(403\) 2.97540 1.71785i 0.148215 0.0855721i
\(404\) −12.1931 + 29.3363i −0.606630 + 1.45953i
\(405\) 0 0
\(406\) 30.3702 4.79202i 1.50725 0.237824i
\(407\) −0.634401 −0.0314461
\(408\) 0 0
\(409\) −5.87455 10.1750i −0.290478 0.503122i 0.683445 0.730002i \(-0.260481\pi\)
−0.973923 + 0.226880i \(0.927148\pi\)
\(410\) 0.950790 4.76487i 0.0469562 0.235320i
\(411\) 0 0
\(412\) −4.85725 37.2427i −0.239299 1.83482i
\(413\) 9.36933 3.45677i 0.461035 0.170096i
\(414\) 0 0
\(415\) −0.302212 + 0.523446i −0.0148350 + 0.0256949i
\(416\) 1.39972 + 22.3937i 0.0686268 + 1.09794i
\(417\) 0 0
\(418\) 7.20514 + 21.2679i 0.352415 + 1.04025i
\(419\) 11.0841i 0.541495i −0.962650 0.270748i \(-0.912729\pi\)
0.962650 0.270748i \(-0.0872709\pi\)
\(420\) 0 0
\(421\) 0.137270i 0.00669012i −0.999994 0.00334506i \(-0.998935\pi\)
0.999994 0.00334506i \(-0.00106477\pi\)
\(422\) −11.3364 + 3.84053i −0.551845 + 0.186954i
\(423\) 0 0
\(424\) 30.5309 + 2.05678i 1.48271 + 0.0998861i
\(425\) −9.90081 + 17.1487i −0.480260 + 0.831834i
\(426\) 0 0
\(427\) −14.5176 12.0736i −0.702555 0.584283i
\(428\) −0.672132 + 0.0876603i −0.0324887 + 0.00423722i
\(429\) 0 0
\(430\) 4.07913 + 0.813956i 0.196713 + 0.0392524i
\(431\) 6.23008 + 10.7908i 0.300092 + 0.519775i 0.976157 0.217067i \(-0.0696491\pi\)
−0.676064 + 0.736843i \(0.736316\pi\)
\(432\) 0 0
\(433\) −14.1563 −0.680310 −0.340155 0.940369i \(-0.610480\pi\)
−0.340155 + 0.940369i \(0.610480\pi\)
\(434\) −2.51993 + 2.03817i −0.120961 + 0.0978353i
\(435\) 0 0
\(436\) 5.99093 14.4140i 0.286914 0.690306i
\(437\) 13.5102 7.80014i 0.646282 0.373131i
\(438\) 0 0
\(439\) 2.72948 4.72760i 0.130271 0.225636i −0.793510 0.608557i \(-0.791749\pi\)
0.923781 + 0.382921i \(0.125082\pi\)
\(440\) −3.08712 2.07086i −0.147173 0.0987246i
\(441\) 0 0
\(442\) 17.7670 + 15.6003i 0.845090 + 0.742030i
\(443\) 28.8691 + 16.6676i 1.37161 + 0.791900i 0.991131 0.132889i \(-0.0424254\pi\)
0.380480 + 0.924789i \(0.375759\pi\)
\(444\) 0 0
\(445\) 3.04485 1.75794i 0.144340 0.0833346i
\(446\) −2.63262 7.77089i −0.124658 0.367962i
\(447\) 0 0
\(448\) −4.59675 20.6608i −0.217176 0.976132i
\(449\) 26.9716 1.27287 0.636435 0.771330i \(-0.280408\pi\)
0.636435 + 0.771330i \(0.280408\pi\)
\(450\) 0 0
\(451\) −12.9397 + 7.47074i −0.609307 + 0.351783i
\(452\) 3.99793 3.06004i 0.188047 0.143932i
\(453\) 0 0
\(454\) 12.1392 + 10.6588i 0.569723 + 0.500244i
\(455\) −3.68884 + 4.43555i −0.172935 + 0.207942i
\(456\) 0 0
\(457\) −9.54668 + 16.5353i −0.446575 + 0.773491i −0.998160 0.0606278i \(-0.980690\pi\)
0.551585 + 0.834118i \(0.314023\pi\)
\(458\) 5.12112 25.6644i 0.239294 1.19922i
\(459\) 0 0
\(460\) −0.991187 + 2.38477i −0.0462143 + 0.111190i
\(461\) 18.9177i 0.881087i 0.897731 + 0.440543i \(0.145214\pi\)
−0.897731 + 0.440543i \(0.854786\pi\)
\(462\) 0 0
\(463\) 0.860370 0.0399848 0.0199924 0.999800i \(-0.493636\pi\)
0.0199924 + 0.999800i \(0.493636\pi\)
\(464\) 31.7281 + 8.58391i 1.47294 + 0.398498i
\(465\) 0 0
\(466\) −15.3268 3.05833i −0.709999 0.141674i
\(467\) −16.1842 9.34394i −0.748914 0.432386i 0.0763871 0.997078i \(-0.475662\pi\)
−0.825302 + 0.564692i \(0.808995\pi\)
\(468\) 0 0
\(469\) 6.64022 2.44987i 0.306617 0.113125i
\(470\) −1.51811 1.33297i −0.0700253 0.0614855i
\(471\) 0 0
\(472\) 10.6521 + 0.717599i 0.490301 + 0.0330302i
\(473\) −6.39558 11.0775i −0.294069 0.509342i
\(474\) 0 0
\(475\) 31.2006i 1.43158i
\(476\) −18.8491 11.9242i −0.863947 0.546546i
\(477\) 0 0
\(478\) 10.2601 + 30.2856i 0.469287 + 1.38523i
\(479\) −9.27364 16.0624i −0.423723 0.733911i 0.572577 0.819851i \(-0.305944\pi\)
−0.996300 + 0.0859405i \(0.972610\pi\)
\(480\) 0 0
\(481\) −0.526255 + 0.911501i −0.0239952 + 0.0415609i
\(482\) 12.9977 14.8029i 0.592028 0.674255i
\(483\) 0 0
\(484\) −1.36680 10.4799i −0.0621271 0.476357i
\(485\) −6.16413 3.55886i −0.279899 0.161600i
\(486\) 0 0
\(487\) 11.4588 + 19.8471i 0.519246 + 0.899360i 0.999750 + 0.0223676i \(0.00712041\pi\)
−0.480504 + 0.876993i \(0.659546\pi\)
\(488\) −8.89505 18.1202i −0.402660 0.820265i
\(489\) 0 0
\(490\) 2.78514 4.67544i 0.125820 0.211215i
\(491\) 24.7987i 1.11915i 0.828780 + 0.559575i \(0.189036\pi\)
−0.828780 + 0.559575i \(0.810964\pi\)
\(492\) 0 0
\(493\) 29.9959 17.3181i 1.35095 0.779969i
\(494\) 36.5345 + 7.29015i 1.64376 + 0.327999i
\(495\) 0 0
\(496\) −3.34889 + 0.888650i −0.150370 + 0.0399016i
\(497\) 22.8604 + 3.92760i 1.02543 + 0.176177i
\(498\) 0 0
\(499\) 33.9707 + 19.6130i 1.52074 + 0.877997i 0.999701 + 0.0244624i \(0.00778739\pi\)
0.521035 + 0.853535i \(0.325546\pi\)
\(500\) −6.48066 8.46697i −0.289824 0.378654i
\(501\) 0 0
\(502\) 0.945686 0.320379i 0.0422080 0.0142992i
\(503\) −7.59396 −0.338598 −0.169299 0.985565i \(-0.554150\pi\)
−0.169299 + 0.985565i \(0.554150\pi\)
\(504\) 0 0
\(505\) −8.73240 −0.388587
\(506\) 7.52177 2.54822i 0.334383 0.113282i
\(507\) 0 0
\(508\) 8.42086 6.44538i 0.373615 0.285967i
\(509\) −3.79222 2.18944i −0.168087 0.0970451i 0.413596 0.910460i \(-0.364272\pi\)
−0.581684 + 0.813415i \(0.697606\pi\)
\(510\) 0 0
\(511\) 4.27052 + 11.5749i 0.188917 + 0.512046i
\(512\) 4.53521 22.1683i 0.200430 0.979708i
\(513\) 0 0
\(514\) 28.8244 + 5.75166i 1.27139 + 0.253695i
\(515\) 8.94047 5.16178i 0.393964 0.227455i
\(516\) 0 0
\(517\) 6.21259i 0.273230i
\(518\) 0.356354 0.926718i 0.0156573 0.0407177i
\(519\) 0 0
\(520\) −5.53626 + 2.71770i −0.242781 + 0.119179i
\(521\) −5.37827 9.31544i −0.235626 0.408117i 0.723828 0.689980i \(-0.242381\pi\)
−0.959455 + 0.281863i \(0.909048\pi\)
\(522\) 0 0
\(523\) −2.43561 1.40620i −0.106502 0.0614889i 0.445803 0.895131i \(-0.352918\pi\)
−0.552305 + 0.833642i \(0.686252\pi\)
\(524\) 19.9098 2.59666i 0.869762 0.113435i
\(525\) 0 0
\(526\) 21.2551 24.2073i 0.926768 1.05549i
\(527\) −1.82555 + 3.16195i −0.0795223 + 0.137737i
\(528\) 0 0
\(529\) 8.74135 + 15.1405i 0.380059 + 0.658281i
\(530\) 2.69881 + 7.96628i 0.117229 + 0.346033i
\(531\) 0 0
\(532\) −35.1150 1.42146i −1.52243 0.0616280i
\(533\) 24.7889i 1.07372i
\(534\) 0 0
\(535\) −0.0931564 0.161352i −0.00402750 0.00697584i
\(536\) 7.54931 + 0.508575i 0.326080 + 0.0219671i
\(537\) 0 0
\(538\) 3.18280 + 2.79465i 0.137220 + 0.120486i
\(539\) −16.4549 + 3.05049i −0.708762 + 0.131394i
\(540\) 0 0
\(541\) −27.0699 15.6288i −1.16383 0.671935i −0.211608 0.977355i \(-0.567870\pi\)
−0.952218 + 0.305419i \(0.901203\pi\)
\(542\) 34.9285 + 6.96970i 1.50031 + 0.299374i
\(543\) 0 0
\(544\) −13.1871 19.8657i −0.565390 0.851735i
\(545\) 4.29055 0.183787
\(546\) 0 0
\(547\) 29.4711i 1.26010i 0.776556 + 0.630048i \(0.216965\pi\)
−0.776556 + 0.630048i \(0.783035\pi\)
\(548\) −6.00165 2.49448i −0.256378 0.106559i
\(549\) 0 0
\(550\) −3.10812 + 15.5763i −0.132531 + 0.664176i
\(551\) 27.2874 47.2632i 1.16248 2.01348i
\(552\) 0 0
\(553\) 1.04296 1.25408i 0.0443512 0.0533289i
\(554\) −10.0369 8.81290i −0.426428 0.374424i
\(555\) 0 0
\(556\) 18.6412 + 24.3546i 0.790561 + 1.03287i
\(557\) −19.3751 + 11.1862i −0.820950 + 0.473976i −0.850744 0.525580i \(-0.823848\pi\)
0.0297941 + 0.999556i \(0.490515\pi\)
\(558\) 0 0
\(559\) −21.2213 −0.897567
\(560\) 4.75916 3.34635i 0.201111 0.141409i
\(561\) 0 0
\(562\) −12.1804 35.9538i −0.513799 1.51662i
\(563\) −28.0528 + 16.1963i −1.18229 + 0.682593i −0.956542 0.291594i \(-0.905814\pi\)
−0.225743 + 0.974187i \(0.572481\pi\)
\(564\) 0 0
\(565\) 1.19846 + 0.691928i 0.0504194 + 0.0291097i
\(566\) −13.7962 12.1137i −0.579896 0.509177i
\(567\) 0 0
\(568\) 20.5928 + 13.8138i 0.864053 + 0.579614i
\(569\) −18.5288 + 32.0928i −0.776767 + 1.34540i 0.157029 + 0.987594i \(0.449808\pi\)
−0.933796 + 0.357806i \(0.883525\pi\)
\(570\) 0 0
\(571\) 19.4303 11.2181i 0.813132 0.469462i −0.0349102 0.999390i \(-0.511115\pi\)
0.848042 + 0.529928i \(0.177781\pi\)
\(572\) 17.5129 + 7.27894i 0.732253 + 0.304348i
\(573\) 0 0
\(574\) −3.64464 23.0985i −0.152124 0.964111i
\(575\) 11.0346 0.460175
\(576\) 0 0
\(577\) −4.78431 8.28667i −0.199173 0.344978i 0.749087 0.662471i \(-0.230492\pi\)
−0.948261 + 0.317493i \(0.897159\pi\)
\(578\) −1.06374 0.212260i −0.0442457 0.00882885i
\(579\) 0 0
\(580\) 1.16841 + 8.95874i 0.0485156 + 0.371991i
\(581\) −0.492563 + 2.86693i −0.0204350 + 0.118940i
\(582\) 0 0
\(583\) 12.9325 22.3997i 0.535609 0.927703i
\(584\) −0.886527 + 13.1596i −0.0366848 + 0.544550i
\(585\) 0 0
\(586\) 12.8090 4.33944i 0.529136 0.179261i
\(587\) 23.6894i 0.977766i 0.872349 + 0.488883i \(0.162595\pi\)
−0.872349 + 0.488883i \(0.837405\pi\)
\(588\) 0 0
\(589\) 5.75289i 0.237044i
\(590\) 0.941600 + 2.77939i 0.0387651 + 0.114426i
\(591\) 0 0
\(592\) 0.752355 0.748721i 0.0309216 0.0307723i
\(593\) −3.72404 + 6.45023i −0.152928 + 0.264879i −0.932303 0.361679i \(-0.882204\pi\)
0.779375 + 0.626558i \(0.215537\pi\)
\(594\) 0 0
\(595\) 1.03810 6.04219i 0.0425579 0.247706i
\(596\) −14.6422 + 1.90965i −0.599766 + 0.0782222i
\(597\) 0 0
\(598\) 2.57829 12.9210i 0.105434 0.528381i
\(599\) 0.837627 + 1.45081i 0.0342245 + 0.0592786i 0.882630 0.470068i \(-0.155771\pi\)
−0.848406 + 0.529346i \(0.822437\pi\)
\(600\) 0 0
\(601\) −8.27385 −0.337497 −0.168749 0.985659i \(-0.553973\pi\)
−0.168749 + 0.985659i \(0.553973\pi\)
\(602\) 19.7742 3.12011i 0.805937 0.127166i
\(603\) 0 0
\(604\) 15.3859 + 6.39489i 0.626045 + 0.260205i
\(605\) 2.51579 1.45249i 0.102281 0.0590522i
\(606\) 0 0
\(607\) 13.2647 22.9751i 0.538397 0.932531i −0.460593 0.887611i \(-0.652363\pi\)
0.998991 0.0449200i \(-0.0143033\pi\)
\(608\) −33.6453 16.7188i −1.36450 0.678036i
\(609\) 0 0
\(610\) 3.66087 4.16932i 0.148224 0.168811i
\(611\) 8.92620 + 5.15354i 0.361115 + 0.208490i
\(612\) 0 0
\(613\) −27.3692 + 15.8016i −1.10543 + 0.638220i −0.937642 0.347603i \(-0.886996\pi\)
−0.167788 + 0.985823i \(0.553662\pi\)
\(614\) 16.3701 5.54586i 0.660645 0.223813i
\(615\) 0 0
\(616\) −17.3889 4.20770i −0.700619 0.169533i
\(617\) −10.1113 −0.407064 −0.203532 0.979068i \(-0.565242\pi\)
−0.203532 + 0.979068i \(0.565242\pi\)
\(618\) 0 0
\(619\) 4.79105 2.76611i 0.192568 0.111179i −0.400616 0.916246i \(-0.631204\pi\)
0.593184 + 0.805067i \(0.297871\pi\)
\(620\) −0.578847 0.756262i −0.0232471 0.0303722i
\(621\) 0 0
\(622\) −29.7499 + 33.8819i −1.19286 + 1.35854i
\(623\) 10.8197 13.0099i 0.433483 0.521230i
\(624\) 0 0
\(625\) −10.2791 + 17.8039i −0.411163 + 0.712155i
\(626\) −29.8504 5.95640i −1.19306 0.238066i
\(627\) 0 0
\(628\) −5.47819 + 13.1804i −0.218604 + 0.525954i
\(629\) 1.11850i 0.0445975i
\(630\) 0 0
\(631\) 35.5582 1.41555 0.707774 0.706439i \(-0.249700\pi\)
0.707774 + 0.706439i \(0.249700\pi\)
\(632\) 1.56529 0.768386i 0.0622640 0.0305648i
\(633\) 0 0
\(634\) 6.40636 32.1054i 0.254429 1.27507i
\(635\) 2.52431 + 1.45741i 0.100174 + 0.0578357i
\(636\) 0 0
\(637\) −9.26693 + 26.1727i −0.367169 + 1.03700i
\(638\) 18.3310 20.8770i 0.725731 0.826528i
\(639\) 0 0
\(640\) 6.10515 1.18752i 0.241327 0.0469410i
\(641\) 4.73300 + 8.19779i 0.186942 + 0.323793i 0.944229 0.329289i \(-0.106809\pi\)
−0.757287 + 0.653082i \(0.773476\pi\)
\(642\) 0 0
\(643\) 13.0085i 0.513007i −0.966543 0.256503i \(-0.917430\pi\)
0.966543 0.256503i \(-0.0825705\pi\)
\(644\) −0.502723 + 12.4190i −0.0198101 + 0.489378i
\(645\) 0 0
\(646\) −37.4971 + 12.7033i −1.47530 + 0.499803i
\(647\) 13.7610 + 23.8347i 0.540999 + 0.937039i 0.998847 + 0.0480078i \(0.0152872\pi\)
−0.457848 + 0.889031i \(0.651379\pi\)
\(648\) 0 0
\(649\) 4.51207 7.81514i 0.177114 0.306771i
\(650\) 19.8016 + 17.3868i 0.776683 + 0.681965i
\(651\) 0 0
\(652\) 14.4963 1.89062i 0.567718 0.0740425i
\(653\) 30.4390 + 17.5740i 1.19117 + 0.687723i 0.958572 0.284850i \(-0.0919439\pi\)
0.232598 + 0.972573i \(0.425277\pi\)
\(654\) 0 0
\(655\) 2.75946 + 4.77952i 0.107821 + 0.186751i
\(656\) 6.52860 24.1313i 0.254899 0.942167i
\(657\) 0 0
\(658\) −9.07522 3.48972i −0.353789 0.136043i
\(659\) 3.86719i 0.150644i −0.997159 0.0753222i \(-0.976001\pi\)
0.997159 0.0753222i \(-0.0239985\pi\)
\(660\) 0 0
\(661\) −14.4295 + 8.33085i −0.561241 + 0.324033i −0.753643 0.657284i \(-0.771705\pi\)
0.192403 + 0.981316i \(0.438372\pi\)
\(662\) −8.16818 + 40.9347i −0.317465 + 1.59097i
\(663\) 0 0
\(664\) −1.73240 + 2.58255i −0.0672300 + 0.100222i
\(665\) −3.34366 9.06278i −0.129662 0.351439i
\(666\) 0 0
\(667\) −16.7154 9.65067i −0.647225 0.373675i
\(668\) 2.99964 2.29594i 0.116060 0.0888328i
\(669\) 0 0
\(670\) 0.667329 + 1.96980i 0.0257812 + 0.0761002i
\(671\) −17.0622 −0.658679
\(672\) 0 0
\(673\) −3.95795 −0.152568 −0.0762838 0.997086i \(-0.524306\pi\)
−0.0762838 + 0.997086i \(0.524306\pi\)
\(674\) −1.49033 4.39912i −0.0574055 0.169448i
\(675\) 0 0
\(676\) 4.33954 3.32150i 0.166905 0.127750i
\(677\) −35.6839 20.6021i −1.37144 0.791804i −0.380334 0.924849i \(-0.624191\pi\)
−0.991110 + 0.133045i \(0.957524\pi\)
\(678\) 0 0
\(679\) −33.7612 5.80045i −1.29564 0.222601i
\(680\) 3.65111 5.44285i 0.140014 0.208724i
\(681\) 0 0
\(682\) −0.573089 + 2.87203i −0.0219447 + 0.109976i
\(683\) 28.6643 16.5493i 1.09681 0.633242i 0.161427 0.986885i \(-0.448390\pi\)
0.935381 + 0.353642i \(0.115057\pi\)
\(684\) 0 0
\(685\) 1.78648i 0.0682580i
\(686\) 4.78690 25.7504i 0.182765 0.983157i
\(687\) 0 0
\(688\) 20.6584 + 5.58903i 0.787593 + 0.213080i
\(689\) −21.4558 37.1626i −0.817402 1.41578i
\(690\) 0 0
\(691\) −12.9010 7.44840i −0.490777 0.283350i 0.234120 0.972208i \(-0.424779\pi\)
−0.724897 + 0.688857i \(0.758113\pi\)
\(692\) 32.8273 4.28137i 1.24791 0.162753i
\(693\) 0 0
\(694\) −33.6628 29.5575i −1.27782 1.12199i
\(695\) −4.21509 + 7.30075i −0.159888 + 0.276933i
\(696\) 0 0
\(697\) −13.1715 22.8138i −0.498907 0.864133i
\(698\) −38.1481 + 12.9238i −1.44393 + 0.489173i
\(699\) 0 0
\(700\) −21.0076 13.2898i −0.794014 0.502305i
\(701\) 32.5746i 1.23032i −0.788401 0.615162i \(-0.789090\pi\)
0.788401 0.615162i \(-0.210910\pi\)
\(702\) 0 0
\(703\) −0.881187 1.52626i −0.0332346 0.0575640i
\(704\) −15.1313 11.6982i −0.570282 0.440893i
\(705\) 0 0
\(706\) −18.8852 + 21.5082i −0.710755 + 0.809471i
\(707\) −39.4289 + 14.5471i −1.48288 + 0.547100i
\(708\) 0 0
\(709\) −9.95635 5.74830i −0.373918 0.215882i 0.301251 0.953545i \(-0.402596\pi\)
−0.675169 + 0.737663i \(0.735929\pi\)
\(710\) −1.33376 + 6.68411i −0.0500550 + 0.250850i
\(711\) 0 0
\(712\) 16.2384 7.97128i 0.608560 0.298736i
\(713\) 2.03461 0.0761967
\(714\) 0 0
\(715\) 5.21300i 0.194955i
\(716\) −4.25411 + 10.2353i −0.158983 + 0.382510i
\(717\) 0 0
\(718\) 34.8412 + 6.95227i 1.30026 + 0.259456i
\(719\) −13.4887 + 23.3632i −0.503045 + 0.871299i 0.496949 + 0.867780i \(0.334454\pi\)
−0.999994 + 0.00351948i \(0.998880\pi\)
\(720\) 0 0
\(721\) 31.7695 38.2004i 1.18316 1.42266i
\(722\) −23.4302 + 26.6844i −0.871981 + 0.993091i
\(723\) 0 0
\(724\) 12.1374 + 15.8574i 0.451081 + 0.589337i
\(725\) 33.4309 19.3013i 1.24159 0.716833i
\(726\) 0 0
\(727\) −27.0230 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(728\) −20.4702 + 21.4938i −0.758678 + 0.796613i
\(729\) 0 0
\(730\) −3.43368 + 1.16326i −0.127086 + 0.0430542i
\(731\) 19.5305 11.2759i 0.722361 0.417055i
\(732\) 0 0
\(733\) 17.9059 + 10.3380i 0.661371 + 0.381843i 0.792799 0.609483i \(-0.208623\pi\)
−0.131428 + 0.991326i \(0.541956\pi\)
\(734\) −28.3497 + 32.2872i −1.04641 + 1.19174i
\(735\) 0 0
\(736\) −5.91288 + 11.8992i −0.217952 + 0.438611i
\(737\) 3.19779 5.53873i 0.117792 0.204022i
\(738\) 0 0
\(739\) 9.30563 5.37261i 0.342313 0.197635i −0.318981 0.947761i \(-0.603341\pi\)
0.661294 + 0.750126i \(0.270007\pi\)
\(740\) 0.269409 + 0.111975i 0.00990367 + 0.00411629i
\(741\) 0 0
\(742\) 25.4566 + 31.4738i 0.934543 + 1.15544i
\(743\) −11.8708 −0.435498 −0.217749 0.976005i \(-0.569871\pi\)
−0.217749 + 0.976005i \(0.569871\pi\)
\(744\) 0 0
\(745\) −2.02938 3.51499i −0.0743507 0.128779i
\(746\) 1.55406 7.78815i 0.0568982 0.285145i
\(747\) 0 0
\(748\) −19.9852 + 2.60650i −0.730732 + 0.0953030i
\(749\) −0.689416 0.573355i −0.0251907 0.0209499i
\(750\) 0 0
\(751\) −8.53229 + 14.7784i −0.311348 + 0.539270i −0.978654 0.205513i \(-0.934114\pi\)
0.667307 + 0.744783i \(0.267447\pi\)
\(752\) −7.33212 7.36771i −0.267375 0.268673i
\(753\) 0 0
\(754\) −14.7897 43.6559i −0.538610 1.58986i
\(755\) 4.57986i 0.166678i
\(756\) 0 0
\(757\) 46.3272i 1.68379i −0.539641 0.841895i \(-0.681440\pi\)
0.539641 0.841895i \(-0.318560\pi\)
\(758\) −10.8094 + 3.66199i −0.392614 + 0.133010i
\(759\) 0 0
\(760\) 0.694120 10.3035i 0.0251784 0.373748i
\(761\) −7.30474 + 12.6522i −0.264796 + 0.458641i −0.967510 0.252832i \(-0.918638\pi\)
0.702714 + 0.711473i \(0.251971\pi\)
\(762\) 0 0
\(763\) 19.3729 7.14753i 0.701346 0.258758i
\(764\) 0.0435595 + 0.333991i 0.00157593 + 0.0120834i
\(765\) 0 0
\(766\) −35.5500 7.09370i −1.28447 0.256306i
\(767\) −7.48582 12.9658i −0.270297 0.468169i
\(768\) 0 0
\(769\) 49.3177 1.77844 0.889221 0.457477i \(-0.151247\pi\)
0.889221 + 0.457477i \(0.151247\pi\)
\(770\) −0.766452 4.85751i −0.0276210 0.175053i
\(771\) 0 0
\(772\) 13.8832 + 5.77030i 0.499667 + 0.207678i
\(773\) −0.902744 + 0.521200i −0.0324695 + 0.0187462i −0.516147 0.856500i \(-0.672634\pi\)
0.483677 + 0.875246i \(0.339301\pi\)
\(774\) 0 0
\(775\) −2.03461 + 3.52404i −0.0730853 + 0.126587i
\(776\) −30.4123 20.4008i −1.09174 0.732346i
\(777\) 0 0
\(778\) −28.2116 24.7711i −1.01143 0.888087i
\(779\) −35.9467 20.7538i −1.28792 0.743583i
\(780\) 0 0
\(781\) 18.1517 10.4799i 0.649517 0.374999i
\(782\) 4.49272 + 13.2615i 0.160659 + 0.474230i
\(783\) 0 0
\(784\) 15.9142 23.0378i 0.568363 0.822778i
\(785\) −3.92334 −0.140030
\(786\) 0 0
\(787\) −34.8899 + 20.1437i −1.24369 + 0.718045i −0.969844 0.243728i \(-0.921629\pi\)
−0.273847 + 0.961773i \(0.588296\pi\)
\(788\) −1.63596 2.13738i −0.0582788 0.0761411i
\(789\) 0 0
\(790\) 0.360161 + 0.316239i 0.0128140 + 0.0112513i
\(791\) 6.56399 + 1.12775i 0.233388 + 0.0400981i
\(792\) 0 0
\(793\) −14.1536 + 24.5148i −0.502610 + 0.870546i
\(794\) 9.43578 47.2873i 0.334863 1.67816i
\(795\) 0 0
\(796\) −23.5677 9.79552i −0.835336 0.347193i
\(797\) 32.2902i 1.14378i 0.820331 + 0.571889i \(0.193789\pi\)
−0.820331 + 0.571889i \(0.806211\pi\)
\(798\) 0 0
\(799\) −10.9533 −0.387501
\(800\) −14.6972 22.1406i −0.519624 0.782790i
\(801\) 0 0
\(802\) 25.4540 + 5.07913i 0.898812 + 0.179350i
\(803\) 9.65489 + 5.57425i 0.340714 + 0.196711i
\(804\) 0 0
\(805\) −3.20521 + 1.18254i −0.112969 + 0.0416792i
\(806\) 3.65111 + 3.20585i 0.128605 + 0.112921i
\(807\) 0 0
\(808\) −44.8270 3.01987i −1.57701 0.106239i
\(809\) 20.8131 + 36.0493i 0.731749 + 1.26743i 0.956135 + 0.292926i \(0.0946291\pi\)
−0.224386 + 0.974500i \(0.572038\pi\)
\(810\) 0 0
\(811\) 18.7227i 0.657444i −0.944427 0.328722i \(-0.893382\pi\)
0.944427 0.328722i \(-0.106618\pi\)
\(812\) 20.1998 + 38.5045i 0.708874 + 1.35124i
\(813\) 0 0
\(814\) −0.287874 0.849739i −0.0100900 0.0297833i
\(815\) 2.00916 + 3.47997i 0.0703778 + 0.121898i
\(816\) 0 0
\(817\) 17.7670 30.7734i 0.621589 1.07662i
\(818\) 10.9631 12.4857i 0.383315 0.436554i
\(819\) 0 0
\(820\) 6.81369 0.888650i 0.237944 0.0310330i
\(821\) −16.2308 9.37088i −0.566460 0.327046i 0.189274 0.981924i \(-0.439386\pi\)
−0.755734 + 0.654878i \(0.772720\pi\)
\(822\) 0 0
\(823\) 10.2211 + 17.7035i 0.356286 + 0.617106i 0.987337 0.158636i \(-0.0507095\pi\)
−0.631051 + 0.775741i \(0.717376\pi\)
\(824\) 47.6802 23.4057i 1.66102 0.815378i
\(825\) 0 0
\(826\) 8.88168 + 10.9810i 0.309033 + 0.382079i
\(827\) 48.6254i 1.69087i −0.534079 0.845435i \(-0.679341\pi\)
0.534079 0.845435i \(-0.320659\pi\)
\(828\) 0 0
\(829\) 6.06173 3.49974i 0.210532 0.121551i −0.391026 0.920379i \(-0.627880\pi\)
0.601559 + 0.798829i \(0.294547\pi\)
\(830\) −0.838258 0.167267i −0.0290964 0.00580593i
\(831\) 0 0
\(832\) −29.3598 + 12.0365i −1.01787 + 0.417290i
\(833\) −5.37827 29.0113i −0.186346 1.00518i
\(834\) 0 0
\(835\) 0.899200 + 0.519154i 0.0311181 + 0.0179660i
\(836\) −25.2175 + 19.3016i −0.872167 + 0.667562i
\(837\) 0 0
\(838\) 14.8465 5.02968i 0.512863 0.173748i
\(839\) −40.1867 −1.38740 −0.693700 0.720264i \(-0.744021\pi\)
−0.693700 + 0.720264i \(0.744021\pi\)
\(840\) 0 0
\(841\) −38.5224 −1.32836
\(842\) 0.183864 0.0622894i 0.00633638 0.00214663i
\(843\) 0 0
\(844\) −10.2883 13.4416i −0.354137 0.462679i
\(845\) 1.30086 + 0.751051i 0.0447509 + 0.0258369i
\(846\) 0 0
\(847\) 8.93974 10.7494i 0.307173 0.369352i
\(848\) 11.0992 + 41.8275i 0.381148 + 1.43636i
\(849\) 0 0
\(850\) −27.4623 5.47987i −0.941950 0.187958i
\(851\) −0.539788 + 0.311647i −0.0185037 + 0.0106831i
\(852\) 0 0
\(853\) 30.8071i 1.05482i 0.849612 + 0.527408i \(0.176836\pi\)
−0.849612 + 0.527408i \(0.823164\pi\)
\(854\) 9.58412 24.9241i 0.327962 0.852884i
\(855\) 0 0
\(856\) −0.422411 0.860500i −0.0144377 0.0294113i
\(857\) 6.84889 + 11.8626i 0.233954 + 0.405220i 0.958968 0.283514i \(-0.0915002\pi\)
−0.725014 + 0.688734i \(0.758167\pi\)
\(858\) 0 0
\(859\) −7.52869 4.34669i −0.256876 0.148307i 0.366033 0.930602i \(-0.380716\pi\)
−0.622908 + 0.782295i \(0.714049\pi\)
\(860\) 0.760758 + 5.83309i 0.0259416 + 0.198907i
\(861\) 0 0
\(862\) −11.6266 + 13.2414i −0.396002 + 0.451003i
\(863\) −0.296174 + 0.512989i −0.0100819 + 0.0174623i −0.871022 0.491243i \(-0.836543\pi\)
0.860940 + 0.508706i \(0.169876\pi\)
\(864\) 0 0
\(865\) 4.54981 + 7.88049i 0.154698 + 0.267945i
\(866\) −6.42377 18.9615i −0.218289 0.644338i
\(867\) 0 0
\(868\) −3.87348 2.45042i −0.131474 0.0831727i
\(869\) 1.47389i 0.0499984i
\(870\) 0 0
\(871\) −5.30533 9.18911i −0.179764 0.311361i
\(872\) 22.0252 + 1.48377i 0.745867 + 0.0502469i
\(873\) 0 0
\(874\) 16.5784 + 14.5566i 0.560772 + 0.492385i
\(875\) 2.38839 13.9015i 0.0807422 0.469955i
\(876\) 0 0
\(877\) 13.2310 + 7.63892i 0.446779 + 0.257948i 0.706469 0.707744i \(-0.250287\pi\)
−0.259690 + 0.965692i \(0.583620\pi\)
\(878\) 7.57089 + 1.51071i 0.255505 + 0.0509839i
\(879\) 0 0
\(880\) 1.37294 5.07470i 0.0462817 0.171068i
\(881\) 43.1280 1.45302 0.726509 0.687157i \(-0.241141\pi\)
0.726509 + 0.687157i \(0.241141\pi\)
\(882\) 0 0
\(883\) 20.2255i 0.680642i −0.940309 0.340321i \(-0.889464\pi\)
0.940309 0.340321i \(-0.110536\pi\)
\(884\) −12.8334 + 30.8768i −0.431633 + 1.03850i
\(885\) 0 0
\(886\) −9.22512 + 46.2316i −0.309924 + 1.55318i
\(887\) 10.7820 18.6750i 0.362024 0.627044i −0.626270 0.779606i \(-0.715419\pi\)
0.988294 + 0.152563i \(0.0487525\pi\)
\(888\) 0 0
\(889\) 13.8258 + 2.37538i 0.463701 + 0.0796678i
\(890\) 3.73633 + 3.28067i 0.125242 + 0.109968i
\(891\) 0 0
\(892\) 9.21400 7.05245i 0.308508 0.236133i
\(893\) −14.9465 + 8.62934i −0.500164 + 0.288770i
\(894\) 0 0
\(895\) −3.04668 −0.101839
\(896\) 25.5880 15.5324i 0.854835 0.518901i
\(897\) 0 0
\(898\) 12.2390 + 36.1268i 0.408421 + 1.20557i
\(899\) 6.16413 3.55886i 0.205585 0.118695i
\(900\) 0 0
\(901\) 39.4926 + 22.8011i 1.31569 + 0.759614i
\(902\) −15.8783 13.9419i −0.528689 0.464214i
\(903\) 0 0
\(904\) 5.91288 + 3.96641i 0.196659 + 0.131921i
\(905\) −2.74447 + 4.75356i −0.0912293 + 0.158014i
\(906\) 0 0
\(907\) −27.3384 + 15.7838i −0.907757 + 0.524094i −0.879709 0.475513i \(-0.842263\pi\)
−0.0280482 + 0.999607i \(0.508929\pi\)
\(908\) −8.76836 + 21.0964i −0.290988 + 0.700110i
\(909\) 0 0
\(910\) −7.61503 2.92823i −0.252436 0.0970699i
\(911\) −15.6873 −0.519744 −0.259872 0.965643i \(-0.583680\pi\)
−0.259872 + 0.965643i \(0.583680\pi\)
\(912\) 0 0
\(913\) 1.31429 + 2.27641i 0.0434965 + 0.0753382i
\(914\) −26.4801 5.28387i −0.875883 0.174775i
\(915\) 0 0
\(916\) 36.6997 4.78642i 1.21259 0.158148i
\(917\) 20.4217 + 16.9838i 0.674385 + 0.560855i
\(918\) 0 0
\(919\) −7.79407 + 13.4997i −0.257103 + 0.445315i −0.965464 0.260535i \(-0.916101\pi\)
0.708362 + 0.705849i \(0.249434\pi\)
\(920\) −3.64402 0.245487i −0.120140 0.00809347i
\(921\) 0 0
\(922\) −25.3391 + 8.58436i −0.834499 + 0.282711i
\(923\) 34.7735i 1.14458i
\(924\) 0 0
\(925\) 1.24659i 0.0409875i
\(926\) 0.390413 + 1.15241i 0.0128298 + 0.0378706i
\(927\) 0 0
\(928\) 2.89979 + 46.3930i 0.0951903 + 1.52292i
\(929\) 20.6926 35.8406i 0.678901 1.17589i −0.296411 0.955060i \(-0.595790\pi\)
0.975312 0.220830i \(-0.0708767\pi\)
\(930\) 0 0
\(931\) −30.1949 35.3505i −0.989599 1.15857i
\(932\) −2.85844 21.9170i −0.0936315 0.717916i
\(933\) 0 0
\(934\) 5.17166 25.9177i 0.169222 0.848053i
\(935\) −2.76992 4.79764i −0.0905860 0.156900i
\(936\) 0 0
\(937\) −23.9308 −0.781785 −0.390892 0.920436i \(-0.627834\pi\)
−0.390892 + 0.920436i \(0.627834\pi\)
\(938\) 6.29460 + 7.78246i 0.205526 + 0.254106i
\(939\) 0 0
\(940\) 1.09656 2.63828i 0.0357657 0.0860513i
\(941\) 33.3285 19.2422i 1.08648 0.627278i 0.153841 0.988096i \(-0.450836\pi\)
0.932636 + 0.360818i \(0.117502\pi\)
\(942\) 0 0
\(943\) −7.33994 + 12.7132i −0.239021 + 0.413997i
\(944\) 3.87244 + 14.5934i 0.126037 + 0.474974i
\(945\) 0 0
\(946\) 11.9354 13.5931i 0.388054 0.441951i
\(947\) 8.36198 + 4.82779i 0.271728 + 0.156882i 0.629673 0.776861i \(-0.283189\pi\)
−0.357945 + 0.933743i \(0.616522\pi\)
\(948\) 0 0
\(949\) 16.0181 9.24804i 0.519969 0.300204i
\(950\) −41.7912 + 14.1580i −1.35588 + 0.459346i
\(951\) 0 0
\(952\) 7.41853 30.6581i 0.240436 0.993634i
\(953\) 19.3777 0.627704 0.313852 0.949472i \(-0.398380\pi\)
0.313852 + 0.949472i \(0.398380\pi\)
\(954\) 0 0
\(955\) −0.0801777 + 0.0462906i −0.00259449 + 0.00149793i
\(956\) −35.9098 + 27.4856i −1.16141 + 0.888947i
\(957\) 0 0
\(958\) 17.3065 19.7101i 0.559146 0.636806i
\(959\) −2.97606 8.06641i −0.0961020 0.260478i
\(960\) 0 0
\(961\) 15.1249 26.1970i 0.487898 0.845065i
\(962\) −1.45970 0.291271i −0.0470626 0.00939094i
\(963\) 0 0
\(964\) 25.7256 + 10.6924i 0.828566 + 0.344379i
\(965\) 4.13255i 0.133031i
\(966\) 0 0
\(967\) 34.8845 1.12181 0.560905 0.827880i \(-0.310453\pi\)
0.560905 + 0.827880i \(0.310453\pi\)
\(968\) 13.4169 6.58622i 0.431235 0.211689i
\(969\) 0 0
\(970\) 1.96975 9.87138i 0.0632449 0.316951i
\(971\) 38.4767 + 22.2146i 1.23478 + 0.712899i 0.968022 0.250865i \(-0.0807151\pi\)
0.266755 + 0.963764i \(0.414048\pi\)
\(972\) 0 0
\(973\) −6.87002 + 39.9865i −0.220243 + 1.28191i
\(974\) −21.3843 + 24.3544i −0.685197 + 0.780365i
\(975\) 0 0
\(976\) 20.2346 20.1368i 0.647693 0.644565i
\(977\) −13.5436 23.4581i −0.433297 0.750492i 0.563858 0.825872i \(-0.309316\pi\)
−0.997155 + 0.0753795i \(0.975983\pi\)
\(978\) 0 0
\(979\) 15.2902i 0.488678i
\(980\) 7.52627 + 1.60893i 0.240418 + 0.0513954i
\(981\) 0 0
\(982\) −33.2163 + 11.2530i −1.05997 + 0.359098i
\(983\) 12.5444 + 21.7275i 0.400103 + 0.692999i 0.993738 0.111736i \(-0.0356410\pi\)
−0.593635 + 0.804735i \(0.702308\pi\)
\(984\) 0 0
\(985\) 0.369920 0.640721i 0.0117866 0.0204151i
\(986\) 36.8079 + 32.3191i 1.17220 + 1.02925i
\(987\) 0 0
\(988\) 6.81369 + 52.2437i 0.216772 + 1.66209i
\(989\) −10.8835 6.28360i −0.346076 0.199807i
\(990\) 0 0
\(991\) −8.81972 15.2762i −0.280168 0.485265i 0.691258 0.722608i \(-0.257057\pi\)
−0.971426 + 0.237343i \(0.923723\pi\)
\(992\) −2.70993 4.08238i −0.0860403 0.129616i
\(993\) 0 0
\(994\) 5.11265 + 32.4023i 0.162164 + 1.02774i
\(995\) 7.01530i 0.222400i
\(996\) 0 0
\(997\) 26.5529 15.3303i 0.840939 0.485516i −0.0166442 0.999861i \(-0.505298\pi\)
0.857583 + 0.514345i \(0.171965\pi\)
\(998\) −10.8553 + 54.4014i −0.343620 + 1.72205i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cj.c.37.4 12
3.2 odd 2 56.2.p.a.37.3 12
4.3 odd 2 2016.2.cr.c.1297.3 12
7.4 even 3 inner 504.2.cj.c.109.1 12
8.3 odd 2 2016.2.cr.c.1297.4 12
8.5 even 2 inner 504.2.cj.c.37.1 12
12.11 even 2 224.2.t.a.177.2 12
21.2 odd 6 392.2.b.e.197.2 6
21.5 even 6 392.2.b.f.197.2 6
21.11 odd 6 56.2.p.a.53.6 yes 12
21.17 even 6 392.2.p.g.165.6 12
21.20 even 2 392.2.p.g.373.3 12
24.5 odd 2 56.2.p.a.37.6 yes 12
24.11 even 2 224.2.t.a.177.5 12
28.11 odd 6 2016.2.cr.c.1873.4 12
56.11 odd 6 2016.2.cr.c.1873.3 12
56.53 even 6 inner 504.2.cj.c.109.4 12
84.11 even 6 224.2.t.a.81.5 12
84.23 even 6 1568.2.b.f.785.2 6
84.47 odd 6 1568.2.b.e.785.5 6
84.59 odd 6 1568.2.t.g.753.2 12
84.83 odd 2 1568.2.t.g.177.5 12
168.5 even 6 392.2.b.f.197.1 6
168.11 even 6 224.2.t.a.81.2 12
168.53 odd 6 56.2.p.a.53.3 yes 12
168.59 odd 6 1568.2.t.g.753.5 12
168.83 odd 2 1568.2.t.g.177.2 12
168.101 even 6 392.2.p.g.165.3 12
168.107 even 6 1568.2.b.f.785.5 6
168.125 even 2 392.2.p.g.373.6 12
168.131 odd 6 1568.2.b.e.785.2 6
168.149 odd 6 392.2.b.e.197.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.3 12 3.2 odd 2
56.2.p.a.37.6 yes 12 24.5 odd 2
56.2.p.a.53.3 yes 12 168.53 odd 6
56.2.p.a.53.6 yes 12 21.11 odd 6
224.2.t.a.81.2 12 168.11 even 6
224.2.t.a.81.5 12 84.11 even 6
224.2.t.a.177.2 12 12.11 even 2
224.2.t.a.177.5 12 24.11 even 2
392.2.b.e.197.1 6 168.149 odd 6
392.2.b.e.197.2 6 21.2 odd 6
392.2.b.f.197.1 6 168.5 even 6
392.2.b.f.197.2 6 21.5 even 6
392.2.p.g.165.3 12 168.101 even 6
392.2.p.g.165.6 12 21.17 even 6
392.2.p.g.373.3 12 21.20 even 2
392.2.p.g.373.6 12 168.125 even 2
504.2.cj.c.37.1 12 8.5 even 2 inner
504.2.cj.c.37.4 12 1.1 even 1 trivial
504.2.cj.c.109.1 12 7.4 even 3 inner
504.2.cj.c.109.4 12 56.53 even 6 inner
1568.2.b.e.785.2 6 168.131 odd 6
1568.2.b.e.785.5 6 84.47 odd 6
1568.2.b.f.785.2 6 84.23 even 6
1568.2.b.f.785.5 6 168.107 even 6
1568.2.t.g.177.2 12 168.83 odd 2
1568.2.t.g.177.5 12 84.83 odd 2
1568.2.t.g.753.2 12 84.59 odd 6
1568.2.t.g.753.5 12 168.59 odd 6
2016.2.cr.c.1297.3 12 4.3 odd 2
2016.2.cr.c.1297.4 12 8.3 odd 2
2016.2.cr.c.1873.3 12 56.11 odd 6
2016.2.cr.c.1873.4 12 28.11 odd 6