Properties

Label 5004.2.a.n
Level $5004$
Weight $2$
Character orbit 5004.a
Self dual yes
Analytic conductor $39.957$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5004,2,Mod(1,5004)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5004.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5004, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5004 = 2^{2} \cdot 3^{2} \cdot 139 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5004.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,0,0,1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9571411714\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 12x^{5} + 27x^{4} + 51x^{3} - 51x^{2} - 64x - 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 556)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_{2}) q^{5} + (\beta_{4} - \beta_{2}) q^{7} + ( - \beta_{2} - 2) q^{11} + ( - \beta_{5} + \beta_{3} + \beta_{2}) q^{13} + (\beta_{6} - \beta_{5} - \beta_{4}) q^{17} + ( - 2 \beta_{6} - \beta_{5} + \cdots + 2 \beta_1) q^{19}+ \cdots + ( - \beta_{6} + 2 \beta_{5} + \beta_{4} + \cdots - 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{5} + q^{7} - 14 q^{11} - 2 q^{13} - 3 q^{17} + 8 q^{19} - 23 q^{23} + 14 q^{25} + 2 q^{29} + 6 q^{31} - 15 q^{35} - 6 q^{37} - 3 q^{41} - 2 q^{43} + 5 q^{47} - 4 q^{49} + 4 q^{53} - 29 q^{55}+ \cdots - 23 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 12x^{5} + 27x^{4} + 51x^{3} - 51x^{2} - 64x - 13 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 4\nu^{5} - 4\nu^{4} + 19\nu^{3} + 4\nu^{2} + \nu - 9 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 4\nu^{5} - 8\nu^{4} + 35\nu^{3} + 16\nu^{2} - 67\nu - 5 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - 6\nu^{5} + 2\nu^{4} + 33\nu^{3} - 28\nu^{2} - 23\nu + 5 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 4\nu^{5} - 8\nu^{4} + 35\nu^{3} + 24\nu^{2} - 75\nu - 37 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} + 3\nu^{5} + 13\nu^{4} - 32\nu^{3} - 50\nu^{2} + 77\nu + 38 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{3} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + 3\beta_{5} - \beta_{4} + 6\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{6} + 15\beta_{5} - 4\beta_{4} - 5\beta_{3} + 2\beta_{2} + 10\beta _1 + 33 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 19\beta_{6} + 50\beta_{5} - 23\beta_{4} + \beta_{3} + 10\beta_{2} + 44\beta _1 + 77 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 73\beta_{6} + 199\beta_{5} - 89\beta_{4} - 12\beta_{3} + 56\beta_{2} + 97\beta _1 + 338 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.280495
−2.02240
2.92439
−0.612167
1.66522
−2.18798
3.51344
0 0 0 −3.03644 0 2.24323 0 0 0
1.2 0 0 0 −2.71725 0 −2.01403 0 0 0
1.3 0 0 0 −1.27411 0 3.91779 0 0 0
1.4 0 0 0 −0.435870 0 1.81286 0 0 0
1.5 0 0 0 0.712965 0 −3.69084 0 0 0
1.6 0 0 0 3.73710 0 0.558925 0 0 0
1.7 0 0 0 4.01360 0 −1.82794 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(139\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5004.2.a.n 7
3.b odd 2 1 556.2.a.c 7
12.b even 2 1 2224.2.a.n 7
24.f even 2 1 8896.2.a.bf 7
24.h odd 2 1 8896.2.a.bc 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
556.2.a.c 7 3.b odd 2 1
2224.2.a.n 7 12.b even 2 1
5004.2.a.n 7 1.a even 1 1 trivial
8896.2.a.bc 7 24.h odd 2 1
8896.2.a.bf 7 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5004))\):

\( T_{5}^{7} - T_{5}^{6} - 24T_{5}^{5} + 2T_{5}^{4} + 161T_{5}^{3} + 117T_{5}^{2} - 91T_{5} - 49 \) Copy content Toggle raw display
\( T_{7}^{7} - T_{7}^{6} - 22T_{7}^{5} + 18T_{7}^{4} + 125T_{7}^{3} - 85T_{7}^{2} - 209T_{7} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} - T^{6} + \cdots - 49 \) Copy content Toggle raw display
$7$ \( T^{7} - T^{6} + \cdots + 121 \) Copy content Toggle raw display
$11$ \( T^{7} + 14 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$13$ \( T^{7} + 2 T^{6} + \cdots + 919 \) Copy content Toggle raw display
$17$ \( T^{7} + 3 T^{6} + \cdots + 176 \) Copy content Toggle raw display
$19$ \( T^{7} - 8 T^{6} + \cdots + 17536 \) Copy content Toggle raw display
$23$ \( T^{7} + 23 T^{6} + \cdots + 88592 \) Copy content Toggle raw display
$29$ \( T^{7} - 2 T^{6} + \cdots + 8163 \) Copy content Toggle raw display
$31$ \( T^{7} - 6 T^{6} + \cdots + 8111 \) Copy content Toggle raw display
$37$ \( T^{7} + 6 T^{6} + \cdots - 100834 \) Copy content Toggle raw display
$41$ \( T^{7} + 3 T^{6} + \cdots + 1808 \) Copy content Toggle raw display
$43$ \( T^{7} + 2 T^{6} + \cdots - 505152 \) Copy content Toggle raw display
$47$ \( T^{7} - 5 T^{6} + \cdots + 26912 \) Copy content Toggle raw display
$53$ \( T^{7} - 4 T^{6} + \cdots + 4336 \) Copy content Toggle raw display
$59$ \( T^{7} + 22 T^{6} + \cdots + 17504 \) Copy content Toggle raw display
$61$ \( T^{7} + 22 T^{6} + \cdots - 225504 \) Copy content Toggle raw display
$67$ \( T^{7} + 13 T^{6} + \cdots - 246536 \) Copy content Toggle raw display
$71$ \( T^{7} + 42 T^{6} + \cdots + 923877 \) Copy content Toggle raw display
$73$ \( T^{7} + 21 T^{6} + \cdots - 690208 \) Copy content Toggle raw display
$79$ \( T^{7} - 4 T^{6} + \cdots - 4483 \) Copy content Toggle raw display
$83$ \( T^{7} + 19 T^{6} + \cdots - 3604061 \) Copy content Toggle raw display
$89$ \( T^{7} + 22 T^{6} + \cdots + 60867 \) Copy content Toggle raw display
$97$ \( T^{7} + 23 T^{6} + \cdots + 176 \) Copy content Toggle raw display
show more
show less