Properties

Label 5004.2.a.l
Level $5004$
Weight $2$
Character orbit 5004.a
Self dual yes
Analytic conductor $39.957$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5004,2,Mod(1,5004)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5004.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5004, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5004 = 2^{2} \cdot 3^{2} \cdot 139 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5004.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9571411714\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.62452821.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 2x^{3} + 18x^{2} - 5x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1668)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{5} + (\beta_{3} + 1) q^{7} + (\beta_{3} - \beta_1 + 1) q^{11} + ( - \beta_{4} + \beta_{2} - 1) q^{13} + ( - \beta_{5} - \beta_{4} + \beta_{3} + \cdots + 1) q^{17} + ( - 2 \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{19}+ \cdots + (3 \beta_{5} - 3 \beta_{4} - \beta_{3} + \cdots - 7) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 4 q^{7} + 3 q^{11} - 9 q^{13} + 13 q^{17} + 4 q^{23} + 3 q^{25} + 9 q^{29} + 12 q^{31} + 13 q^{35} - 14 q^{37} + 11 q^{41} - 7 q^{43} + 8 q^{47} + 22 q^{53} + 8 q^{55} + 9 q^{59} - 19 q^{61}+ \cdots - 47 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 10x^{4} + 2x^{3} + 18x^{2} - 5x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 7\nu^{2} + 14\nu - 4 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + \nu^{4} - 14\nu^{3} - 11\nu^{2} + 26\nu + 2 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + \nu^{4} - 11\nu^{3} - 17\nu^{2} + 11\nu + 14 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{5} - \nu^{4} - 19\nu^{3} - 7\nu^{2} + 22\nu + 1 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} - \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 10\beta_{5} - 8\beta_{4} - \beta_{3} - 11\beta_{2} + 16\beta _1 + 20 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 29\beta_{5} - 17\beta_{4} - 10\beta_{3} - 28\beta_{2} + 67\beta _1 + 39 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.11822
−0.367756
3.36923
−1.77670
0.750556
1.14288
0 0 0 −2.04046 0 3.70568 0 0 0
1.2 0 0 0 −1.61576 0 −1.78049 0 0 0
1.3 0 0 0 −1.29989 0 −1.56475 0 0 0
1.4 0 0 0 1.15247 0 −1.71296 0 0 0
1.5 0 0 0 3.22404 0 4.31797 0 0 0
1.6 0 0 0 3.57960 0 1.03455 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(139\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5004.2.a.l 6
3.b odd 2 1 1668.2.a.g 6
12.b even 2 1 6672.2.a.bl 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1668.2.a.g 6 3.b odd 2 1
5004.2.a.l 6 1.a even 1 1 trivial
6672.2.a.bl 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5004))\):

\( T_{5}^{6} - 3T_{5}^{5} - 12T_{5}^{4} + 23T_{5}^{3} + 56T_{5}^{2} - 24T_{5} - 57 \) Copy content Toggle raw display
\( T_{7}^{6} - 4T_{7}^{5} - 13T_{7}^{4} + 34T_{7}^{3} + 80T_{7}^{2} - 25T_{7} - 79 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots - 57 \) Copy content Toggle raw display
$7$ \( T^{6} - 4 T^{5} + \cdots - 79 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$13$ \( T^{6} + 9 T^{5} + \cdots + 404 \) Copy content Toggle raw display
$17$ \( T^{6} - 13 T^{5} + \cdots + 6672 \) Copy content Toggle raw display
$19$ \( T^{6} - 93 T^{4} + \cdots - 7184 \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots - 3056 \) Copy content Toggle raw display
$29$ \( T^{6} - 9 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$31$ \( T^{6} - 12 T^{5} + \cdots + 31573 \) Copy content Toggle raw display
$37$ \( T^{6} + 14 T^{5} + \cdots + 578 \) Copy content Toggle raw display
$41$ \( T^{6} - 11 T^{5} + \cdots + 408866 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 17152 \) Copy content Toggle raw display
$47$ \( T^{6} - 8 T^{5} + \cdots + 1152 \) Copy content Toggle raw display
$53$ \( T^{6} - 22 T^{5} + \cdots + 1536 \) Copy content Toggle raw display
$59$ \( T^{6} - 9 T^{5} + \cdots + 126304 \) Copy content Toggle raw display
$61$ \( T^{6} + 19 T^{5} + \cdots + 12928 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots + 1753 \) Copy content Toggle raw display
$71$ \( T^{6} - 15 T^{5} + \cdots - 1788 \) Copy content Toggle raw display
$73$ \( T^{6} + 10 T^{5} + \cdots - 97024 \) Copy content Toggle raw display
$79$ \( T^{6} - 9 T^{5} + \cdots - 47479 \) Copy content Toggle raw display
$83$ \( T^{6} - 25 T^{5} + \cdots + 669 \) Copy content Toggle raw display
$89$ \( T^{6} - 36 T^{5} + \cdots + 2075 \) Copy content Toggle raw display
$97$ \( T^{6} + 47 T^{5} + \cdots + 149808 \) Copy content Toggle raw display
show more
show less