Properties

Label 5002.2.a.k
Level $5002$
Weight $2$
Character orbit 5002.a
Self dual yes
Analytic conductor $39.941$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5002,2,Mod(1,5002)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5002.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5002, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5002 = 2 \cdot 41 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5002.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-20,11,20,9,-11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9411710910\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 9 x^{19} - x^{18} + 205 x^{17} - 305 x^{16} - 1919 x^{15} + 4028 x^{14} + 9460 x^{13} + \cdots - 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + \beta_{2} q^{5} + (\beta_1 - 1) q^{6} + (\beta_{9} + 1) q^{7} - q^{8} + (\beta_{17} + \beta_{15} + \beta_{5} + \cdots + 2) q^{9} - \beta_{2} q^{10} + (\beta_{3} + 1) q^{11}+ \cdots + ( - 3 \beta_{19} + 2 \beta_{18} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{2} + 11 q^{3} + 20 q^{4} + 9 q^{5} - 11 q^{6} + 12 q^{7} - 20 q^{8} + 25 q^{9} - 9 q^{10} + 18 q^{11} + 11 q^{12} + 8 q^{13} - 12 q^{14} + 4 q^{15} + 20 q^{16} + 25 q^{17} - 25 q^{18} + 18 q^{19}+ \cdots + 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 9 x^{19} - x^{18} + 205 x^{17} - 305 x^{16} - 1919 x^{15} + 4028 x^{14} + 9460 x^{13} + \cdots - 45 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 16\!\cdots\!43 \nu^{19} + \cdots - 47\!\cdots\!59 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 38\!\cdots\!09 \nu^{19} + \cdots - 27\!\cdots\!31 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 83\!\cdots\!75 \nu^{19} + \cdots + 34\!\cdots\!29 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 75\!\cdots\!36 \nu^{19} + \cdots + 64\!\cdots\!49 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 78\!\cdots\!26 \nu^{19} + \cdots + 56\!\cdots\!75 ) / 11\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 26\!\cdots\!13 \nu^{19} + \cdots - 25\!\cdots\!25 ) / 37\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 37\!\cdots\!85 \nu^{19} + \cdots - 11\!\cdots\!41 ) / 49\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 16\!\cdots\!55 \nu^{19} + \cdots - 40\!\cdots\!27 ) / 11\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 78\!\cdots\!69 \nu^{19} + \cdots - 39\!\cdots\!31 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 22\!\cdots\!53 \nu^{19} + \cdots - 73\!\cdots\!94 ) / 11\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10\!\cdots\!61 \nu^{19} + \cdots - 56\!\cdots\!63 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 11\!\cdots\!83 \nu^{19} + \cdots - 33\!\cdots\!63 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 40\!\cdots\!81 \nu^{19} + \cdots - 71\!\cdots\!07 ) / 14\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 10\!\cdots\!65 \nu^{19} + \cdots - 20\!\cdots\!18 ) / 37\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 38\!\cdots\!57 \nu^{19} + \cdots - 80\!\cdots\!20 ) / 12\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 72\!\cdots\!26 \nu^{19} + \cdots - 32\!\cdots\!37 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 74\!\cdots\!86 \nu^{19} + \cdots - 34\!\cdots\!23 ) / 22\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 15\!\cdots\!17 \nu^{19} + \cdots + 14\!\cdots\!93 ) / 44\!\cdots\!48 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{17} + \beta_{15} + \beta_{5} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - \beta_{19} + 2 \beta_{17} + \beta_{16} + \beta_{15} - \beta_{12} - \beta_{9} + 3 \beta_{5} - \beta_{4} + \cdots + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 6 \beta_{19} + 2 \beta_{18} + 9 \beta_{17} + 4 \beta_{16} + 6 \beta_{15} + 2 \beta_{14} - 5 \beta_{12} + \cdots + 32 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 26 \beta_{19} + 5 \beta_{18} + 29 \beta_{17} + 17 \beta_{16} + 10 \beta_{15} + 5 \beta_{14} + \cdots + 77 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 124 \beta_{19} + 35 \beta_{18} + 109 \beta_{17} + 72 \beta_{16} + 32 \beta_{15} + 38 \beta_{14} + \cdots + 370 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 497 \beta_{19} + 110 \beta_{18} + 418 \beta_{17} + 275 \beta_{16} + 45 \beta_{15} + 126 \beta_{14} + \cdots + 1227 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 2148 \beta_{19} + 529 \beta_{18} + 1585 \beta_{17} + 1145 \beta_{16} - 10 \beta_{15} + 634 \beta_{14} + \cdots + 5109 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 8584 \beta_{19} + 1860 \beta_{18} + 6332 \beta_{17} + 4424 \beta_{16} - 735 \beta_{15} + 2364 \beta_{14} + \cdots + 18948 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 35489 \beta_{19} + 7823 \beta_{18} + 24648 \beta_{17} + 18006 \beta_{16} - 5306 \beta_{15} + \cdots + 75765 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 141892 \beta_{19} + 28957 \beta_{18} + 98937 \beta_{17} + 70580 \beta_{16} - 28377 \beta_{15} + \cdots + 292109 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 574753 \beta_{19} + 115534 \beta_{18} + 390836 \beta_{17} + 283333 \beta_{16} - 139873 \beta_{15} + \cdots + 1155331 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 2295172 \beta_{19} + 437756 \beta_{18} + 1565129 \beta_{17} + 1118564 \beta_{16} - 638577 \beta_{15} + \cdots + 4516982 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 9204987 \beta_{19} + 1711644 \beta_{18} + 6217035 \beta_{17} + 4459116 \beta_{16} - 2841341 \beta_{15} + \cdots + 17819346 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 36686758 \beta_{19} + 6558949 \beta_{18} + 24821626 \beta_{17} + 17650968 \beta_{16} + \cdots + 70041765 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 146367546 \beta_{19} + 25476008 \beta_{18} + 98701609 \beta_{17} + 70126009 \beta_{16} + \cdots + 276223946 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 582239163 \beta_{19} + 98238183 \beta_{18} + 393065887 \beta_{17} + 277776491 \beta_{16} + \cdots + 1088165791 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 2315937299 \beta_{19} + 381191485 \beta_{18} + 1562003724 \beta_{17} + 1101676243 \beta_{16} + \cdots + 4292349140 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 9197992431 \beta_{19} + 1476119021 \beta_{18} + 6208084098 \beta_{17} + 4363604443 \beta_{16} + \cdots + 16927036492 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.95254
3.49728
3.40221
2.83747
2.31508
1.55396
1.32017
1.07098
0.823540
0.624633
0.467368
−0.0139135
−0.486713
−0.976011
−1.30243
−1.63542
−1.88262
−2.01613
−2.13601
−2.41598
−1.00000 −2.95254 1.00000 0.567950 2.95254 −0.536131 −1.00000 5.71747 −0.567950
1.2 −1.00000 −2.49728 1.00000 −1.18967 2.49728 1.90395 −1.00000 3.23642 1.18967
1.3 −1.00000 −2.40221 1.00000 2.77621 2.40221 −1.26994 −1.00000 2.77063 −2.77621
1.4 −1.00000 −1.83747 1.00000 3.44644 1.83747 3.34177 −1.00000 0.376288 −3.44644
1.5 −1.00000 −1.31508 1.00000 −3.45676 1.31508 1.60623 −1.00000 −1.27057 3.45676
1.6 −1.00000 −0.553960 1.00000 −2.58493 0.553960 2.53063 −1.00000 −2.69313 2.58493
1.7 −1.00000 −0.320175 1.00000 0.801058 0.320175 −1.32458 −1.00000 −2.89749 −0.801058
1.8 −1.00000 −0.0709782 1.00000 3.26241 0.0709782 −1.37639 −1.00000 −2.99496 −3.26241
1.9 −1.00000 0.176460 1.00000 3.59938 −0.176460 2.42930 −1.00000 −2.96886 −3.59938
1.10 −1.00000 0.375367 1.00000 1.22435 −0.375367 5.01127 −1.00000 −2.85910 −1.22435
1.11 −1.00000 0.532632 1.00000 −0.662168 −0.532632 −1.94148 −1.00000 −2.71630 0.662168
1.12 −1.00000 1.01391 1.00000 −2.19014 −1.01391 −1.21109 −1.00000 −1.97198 2.19014
1.13 −1.00000 1.48671 1.00000 −2.46211 −1.48671 2.44897 −1.00000 −0.789685 2.46211
1.14 −1.00000 1.97601 1.00000 2.99900 −1.97601 −4.16691 −1.00000 0.904619 −2.99900
1.15 −1.00000 2.30243 1.00000 −2.87294 −2.30243 −4.36976 −1.00000 2.30120 2.87294
1.16 −1.00000 2.63542 1.00000 1.99693 −2.63542 4.42425 −1.00000 3.94542 −1.99693
1.17 −1.00000 2.88262 1.00000 0.0528086 −2.88262 2.97329 −1.00000 5.30951 −0.0528086
1.18 −1.00000 3.01613 1.00000 4.03782 −3.01613 1.17454 −1.00000 6.09704 −4.03782
1.19 −1.00000 3.13601 1.00000 1.31161 −3.13601 0.413239 −1.00000 6.83458 −1.31161
1.20 −1.00000 3.41598 1.00000 −1.65726 −3.41598 −0.0611560 −1.00000 8.66891 1.65726
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.20
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(41\) \( -1 \)
\(61\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5002.2.a.k 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5002.2.a.k 20 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5002))\):

\( T_{3}^{20} - 11 T_{3}^{19} + 18 T_{3}^{18} + 212 T_{3}^{17} - 849 T_{3}^{16} - 885 T_{3}^{15} + \cdots + 32 \) Copy content Toggle raw display
\( T_{7}^{20} - 12 T_{7}^{19} + 3 T_{7}^{18} + 486 T_{7}^{17} - 1586 T_{7}^{16} - 5389 T_{7}^{15} + \cdots - 16000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{20} \) Copy content Toggle raw display
$3$ \( T^{20} - 11 T^{19} + \cdots + 32 \) Copy content Toggle raw display
$5$ \( T^{20} - 9 T^{19} + \cdots + 18944 \) Copy content Toggle raw display
$7$ \( T^{20} - 12 T^{19} + \cdots - 16000 \) Copy content Toggle raw display
$11$ \( T^{20} - 18 T^{19} + \cdots - 135672 \) Copy content Toggle raw display
$13$ \( T^{20} - 8 T^{19} + \cdots - 141696 \) Copy content Toggle raw display
$17$ \( T^{20} - 25 T^{19} + \cdots + 5299200 \) Copy content Toggle raw display
$19$ \( T^{20} - 18 T^{19} + \cdots + 10688160 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 1616473600 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots - 285585868800 \) Copy content Toggle raw display
$31$ \( T^{20} - T^{19} + \cdots + 16542720 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots - 49096259616 \) Copy content Toggle raw display
$41$ \( (T - 1)^{20} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots - 1254737078784 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots - 291141817128 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots - 947442087936 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots - 677485775523840 \) Copy content Toggle raw display
$61$ \( (T + 1)^{20} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots - 66\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 73478473279520 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots - 358993207274976 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 1410236544160 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots - 43275345931392 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 19\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots - 10\!\cdots\!96 \) Copy content Toggle raw display
show more
show less