Properties

Label 50.8.b.c.49.1
Level $50$
Weight $8$
Character 50.49
Analytic conductor $15.619$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,8,Mod(49,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-128,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6192512742\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.8.b.c.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -12.0000i q^{3} -64.0000 q^{4} -96.0000 q^{6} +1016.00i q^{7} +512.000i q^{8} +2043.00 q^{9} +1092.00 q^{11} +768.000i q^{12} -1382.00i q^{13} +8128.00 q^{14} +4096.00 q^{16} +14706.0i q^{17} -16344.0i q^{18} +39940.0 q^{19} +12192.0 q^{21} -8736.00i q^{22} -68712.0i q^{23} +6144.00 q^{24} -11056.0 q^{26} -50760.0i q^{27} -65024.0i q^{28} +102570. q^{29} +227552. q^{31} -32768.0i q^{32} -13104.0i q^{33} +117648. q^{34} -130752. q^{36} +160526. i q^{37} -319520. i q^{38} -16584.0 q^{39} +10842.0 q^{41} -97536.0i q^{42} +630748. i q^{43} -69888.0 q^{44} -549696. q^{46} +472656. i q^{47} -49152.0i q^{48} -208713. q^{49} +176472. q^{51} +88448.0i q^{52} +1.49402e6i q^{53} -406080. q^{54} -520192. q^{56} -479280. i q^{57} -820560. i q^{58} -2.64066e6 q^{59} +827702. q^{61} -1.82042e6i q^{62} +2.07569e6i q^{63} -262144. q^{64} -104832. q^{66} -126004. i q^{67} -941184. i q^{68} -824544. q^{69} -1.41473e6 q^{71} +1.04602e6i q^{72} -980282. i q^{73} +1.28421e6 q^{74} -2.55616e6 q^{76} +1.10947e6i q^{77} +132672. i q^{78} +3.56680e6 q^{79} +3.85892e6 q^{81} -86736.0i q^{82} -5.67289e6i q^{83} -780288. q^{84} +5.04598e6 q^{86} -1.23084e6i q^{87} +559104. i q^{88} +1.19512e7 q^{89} +1.40411e6 q^{91} +4.39757e6i q^{92} -2.73062e6i q^{93} +3.78125e6 q^{94} -393216. q^{96} +8.68215e6i q^{97} +1.66970e6i q^{98} +2.23096e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} - 192 q^{6} + 4086 q^{9} + 2184 q^{11} + 16256 q^{14} + 8192 q^{16} + 79880 q^{19} + 24384 q^{21} + 12288 q^{24} - 22112 q^{26} + 205140 q^{29} + 455104 q^{31} + 235296 q^{34} - 261504 q^{36}+ \cdots + 4461912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.00000i − 0.707107i
\(3\) − 12.0000i − 0.256600i −0.991735 0.128300i \(-0.959048\pi\)
0.991735 0.128300i \(-0.0409521\pi\)
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) −96.0000 −0.181444
\(7\) 1016.00i 1.11957i 0.828638 + 0.559784i \(0.189116\pi\)
−0.828638 + 0.559784i \(0.810884\pi\)
\(8\) 512.000i 0.353553i
\(9\) 2043.00 0.934156
\(10\) 0 0
\(11\) 1092.00 0.247371 0.123685 0.992321i \(-0.460529\pi\)
0.123685 + 0.992321i \(0.460529\pi\)
\(12\) 768.000i 0.128300i
\(13\) − 1382.00i − 0.174464i −0.996188 0.0872321i \(-0.972198\pi\)
0.996188 0.0872321i \(-0.0278022\pi\)
\(14\) 8128.00 0.791654
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 14706.0i 0.725978i 0.931793 + 0.362989i \(0.118244\pi\)
−0.931793 + 0.362989i \(0.881756\pi\)
\(18\) − 16344.0i − 0.660548i
\(19\) 39940.0 1.33589 0.667945 0.744211i \(-0.267174\pi\)
0.667945 + 0.744211i \(0.267174\pi\)
\(20\) 0 0
\(21\) 12192.0 0.287281
\(22\) − 8736.00i − 0.174917i
\(23\) − 68712.0i − 1.17757i −0.808291 0.588783i \(-0.799607\pi\)
0.808291 0.588783i \(-0.200393\pi\)
\(24\) 6144.00 0.0907218
\(25\) 0 0
\(26\) −11056.0 −0.123365
\(27\) − 50760.0i − 0.496305i
\(28\) − 65024.0i − 0.559784i
\(29\) 102570. 0.780957 0.390479 0.920612i \(-0.372310\pi\)
0.390479 + 0.920612i \(0.372310\pi\)
\(30\) 0 0
\(31\) 227552. 1.37188 0.685938 0.727660i \(-0.259392\pi\)
0.685938 + 0.727660i \(0.259392\pi\)
\(32\) − 32768.0i − 0.176777i
\(33\) − 13104.0i − 0.0634753i
\(34\) 117648. 0.513344
\(35\) 0 0
\(36\) −130752. −0.467078
\(37\) 160526.i 0.521002i 0.965474 + 0.260501i \(0.0838877\pi\)
−0.965474 + 0.260501i \(0.916112\pi\)
\(38\) − 319520.i − 0.944616i
\(39\) −16584.0 −0.0447675
\(40\) 0 0
\(41\) 10842.0 0.0245678 0.0122839 0.999925i \(-0.496090\pi\)
0.0122839 + 0.999925i \(0.496090\pi\)
\(42\) − 97536.0i − 0.203139i
\(43\) 630748.i 1.20981i 0.796299 + 0.604904i \(0.206788\pi\)
−0.796299 + 0.604904i \(0.793212\pi\)
\(44\) −69888.0 −0.123685
\(45\) 0 0
\(46\) −549696. −0.832665
\(47\) 472656.i 0.664053i 0.943270 + 0.332026i \(0.107732\pi\)
−0.943270 + 0.332026i \(0.892268\pi\)
\(48\) − 49152.0i − 0.0641500i
\(49\) −208713. −0.253433
\(50\) 0 0
\(51\) 176472. 0.186286
\(52\) 88448.0i 0.0872321i
\(53\) 1.49402e6i 1.37845i 0.724548 + 0.689224i \(0.242048\pi\)
−0.724548 + 0.689224i \(0.757952\pi\)
\(54\) −406080. −0.350940
\(55\) 0 0
\(56\) −520192. −0.395827
\(57\) − 479280.i − 0.342789i
\(58\) − 820560.i − 0.552220i
\(59\) −2.64066e6 −1.67390 −0.836952 0.547277i \(-0.815665\pi\)
−0.836952 + 0.547277i \(0.815665\pi\)
\(60\) 0 0
\(61\) 827702. 0.466895 0.233448 0.972369i \(-0.424999\pi\)
0.233448 + 0.972369i \(0.424999\pi\)
\(62\) − 1.82042e6i − 0.970063i
\(63\) 2.07569e6i 1.04585i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) −104832. −0.0448838
\(67\) − 126004.i − 0.0511826i −0.999672 0.0255913i \(-0.991853\pi\)
0.999672 0.0255913i \(-0.00814686\pi\)
\(68\) − 941184.i − 0.362989i
\(69\) −824544. −0.302164
\(70\) 0 0
\(71\) −1.41473e6 −0.469104 −0.234552 0.972104i \(-0.575362\pi\)
−0.234552 + 0.972104i \(0.575362\pi\)
\(72\) 1.04602e6i 0.330274i
\(73\) − 980282.i − 0.294931i −0.989067 0.147466i \(-0.952888\pi\)
0.989067 0.147466i \(-0.0471116\pi\)
\(74\) 1.28421e6 0.368404
\(75\) 0 0
\(76\) −2.55616e6 −0.667945
\(77\) 1.10947e6i 0.276948i
\(78\) 132672.i 0.0316554i
\(79\) 3.56680e6 0.813924 0.406962 0.913445i \(-0.366588\pi\)
0.406962 + 0.913445i \(0.366588\pi\)
\(80\) 0 0
\(81\) 3.85892e6 0.806805
\(82\) − 86736.0i − 0.0173720i
\(83\) − 5.67289e6i − 1.08901i −0.838758 0.544504i \(-0.816718\pi\)
0.838758 0.544504i \(-0.183282\pi\)
\(84\) −780288. −0.143641
\(85\) 0 0
\(86\) 5.04598e6 0.855463
\(87\) − 1.23084e6i − 0.200394i
\(88\) 559104.i 0.0874587i
\(89\) 1.19512e7 1.79699 0.898496 0.438982i \(-0.144661\pi\)
0.898496 + 0.438982i \(0.144661\pi\)
\(90\) 0 0
\(91\) 1.40411e6 0.195325
\(92\) 4.39757e6i 0.588783i
\(93\) − 2.73062e6i − 0.352023i
\(94\) 3.78125e6 0.469556
\(95\) 0 0
\(96\) −393216. −0.0453609
\(97\) 8.68215e6i 0.965886i 0.875652 + 0.482943i \(0.160432\pi\)
−0.875652 + 0.482943i \(0.839568\pi\)
\(98\) 1.66970e6i 0.179204i
\(99\) 2.23096e6 0.231083
\(100\) 0 0
\(101\) −1.00795e7 −0.973455 −0.486727 0.873554i \(-0.661810\pi\)
−0.486727 + 0.873554i \(0.661810\pi\)
\(102\) − 1.41178e6i − 0.131724i
\(103\) − 3.74799e6i − 0.337962i −0.985619 0.168981i \(-0.945952\pi\)
0.985619 0.168981i \(-0.0540477\pi\)
\(104\) 707584. 0.0616824
\(105\) 0 0
\(106\) 1.19521e7 0.974710
\(107\) − 1.79856e7i − 1.41932i −0.704543 0.709661i \(-0.748848\pi\)
0.704543 0.709661i \(-0.251152\pi\)
\(108\) 3.24864e6i 0.248152i
\(109\) −1.22570e7 −0.906552 −0.453276 0.891370i \(-0.649745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(110\) 0 0
\(111\) 1.92631e6 0.133689
\(112\) 4.16154e6i 0.279892i
\(113\) − 1.65950e7i − 1.08194i −0.841043 0.540968i \(-0.818058\pi\)
0.841043 0.540968i \(-0.181942\pi\)
\(114\) −3.83424e6 −0.242389
\(115\) 0 0
\(116\) −6.56448e6 −0.390479
\(117\) − 2.82343e6i − 0.162977i
\(118\) 2.11253e7i 1.18363i
\(119\) −1.49413e7 −0.812782
\(120\) 0 0
\(121\) −1.82947e7 −0.938808
\(122\) − 6.62162e6i − 0.330145i
\(123\) − 130104.i − 0.00630410i
\(124\) −1.45633e7 −0.685938
\(125\) 0 0
\(126\) 1.66055e7 0.739529
\(127\) 1.16826e6i 0.0506087i 0.999680 + 0.0253043i \(0.00805548\pi\)
−0.999680 + 0.0253043i \(0.991945\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 7.56898e6 0.310437
\(130\) 0 0
\(131\) −7.92383e6 −0.307954 −0.153977 0.988074i \(-0.549208\pi\)
−0.153977 + 0.988074i \(0.549208\pi\)
\(132\) 838656.i 0.0317377i
\(133\) 4.05790e7i 1.49562i
\(134\) −1.00803e6 −0.0361916
\(135\) 0 0
\(136\) −7.52947e6 −0.256672
\(137\) − 315654.i − 0.0104879i −0.999986 0.00524396i \(-0.998331\pi\)
0.999986 0.00524396i \(-0.00166921\pi\)
\(138\) 6.59635e6i 0.213662i
\(139\) −3.92038e7 −1.23816 −0.619079 0.785329i \(-0.712494\pi\)
−0.619079 + 0.785329i \(0.712494\pi\)
\(140\) 0 0
\(141\) 5.67187e6 0.170396
\(142\) 1.13178e7i 0.331706i
\(143\) − 1.50914e6i − 0.0431573i
\(144\) 8.36813e6 0.233539
\(145\) 0 0
\(146\) −7.84226e6 −0.208548
\(147\) 2.50456e6i 0.0650309i
\(148\) − 1.02737e7i − 0.260501i
\(149\) 2.18860e7 0.542020 0.271010 0.962577i \(-0.412642\pi\)
0.271010 + 0.962577i \(0.412642\pi\)
\(150\) 0 0
\(151\) −2.94154e7 −0.695274 −0.347637 0.937629i \(-0.613016\pi\)
−0.347637 + 0.937629i \(0.613016\pi\)
\(152\) 2.04493e7i 0.472308i
\(153\) 3.00444e7i 0.678177i
\(154\) 8.87578e6 0.195832
\(155\) 0 0
\(156\) 1.06138e6 0.0223838
\(157\) 6.05550e7i 1.24882i 0.781095 + 0.624412i \(0.214661\pi\)
−0.781095 + 0.624412i \(0.785339\pi\)
\(158\) − 2.85344e7i − 0.575531i
\(159\) 1.79282e7 0.353710
\(160\) 0 0
\(161\) 6.98114e7 1.31837
\(162\) − 3.08714e7i − 0.570497i
\(163\) − 5.70853e7i − 1.03245i −0.856454 0.516223i \(-0.827337\pi\)
0.856454 0.516223i \(-0.172663\pi\)
\(164\) −693888. −0.0122839
\(165\) 0 0
\(166\) −4.53831e7 −0.770045
\(167\) − 8.77265e7i − 1.45755i −0.684754 0.728775i \(-0.740090\pi\)
0.684754 0.728775i \(-0.259910\pi\)
\(168\) 6.24230e6i 0.101569i
\(169\) 6.08386e7 0.969562
\(170\) 0 0
\(171\) 8.15974e7 1.24793
\(172\) − 4.03679e7i − 0.604904i
\(173\) − 8.56954e6i − 0.125833i −0.998019 0.0629167i \(-0.979960\pi\)
0.998019 0.0629167i \(-0.0200403\pi\)
\(174\) −9.84672e6 −0.141700
\(175\) 0 0
\(176\) 4.47283e6 0.0618427
\(177\) 3.16879e7i 0.429524i
\(178\) − 9.56095e7i − 1.27067i
\(179\) −1.88041e7 −0.245056 −0.122528 0.992465i \(-0.539100\pi\)
−0.122528 + 0.992465i \(0.539100\pi\)
\(180\) 0 0
\(181\) −5.99625e7 −0.751631 −0.375816 0.926694i \(-0.622637\pi\)
−0.375816 + 0.926694i \(0.622637\pi\)
\(182\) − 1.12329e7i − 0.138115i
\(183\) − 9.93242e6i − 0.119805i
\(184\) 3.51805e7 0.416332
\(185\) 0 0
\(186\) −2.18450e7 −0.248918
\(187\) 1.60590e7i 0.179586i
\(188\) − 3.02500e7i − 0.332026i
\(189\) 5.15722e7 0.555647
\(190\) 0 0
\(191\) 9.39861e7 0.975993 0.487997 0.872845i \(-0.337728\pi\)
0.487997 + 0.872845i \(0.337728\pi\)
\(192\) 3.14573e6i 0.0320750i
\(193\) 3.51946e7i 0.352391i 0.984355 + 0.176196i \(0.0563791\pi\)
−0.984355 + 0.176196i \(0.943621\pi\)
\(194\) 6.94572e7 0.682985
\(195\) 0 0
\(196\) 1.33576e7 0.126717
\(197\) 1.02985e8i 0.959718i 0.877346 + 0.479859i \(0.159312\pi\)
−0.877346 + 0.479859i \(0.840688\pi\)
\(198\) − 1.78476e7i − 0.163400i
\(199\) −8.36376e7 −0.752342 −0.376171 0.926550i \(-0.622760\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(200\) 0 0
\(201\) −1.51205e6 −0.0131335
\(202\) 8.06363e7i 0.688337i
\(203\) 1.04211e8i 0.874335i
\(204\) −1.12942e7 −0.0931430
\(205\) 0 0
\(206\) −2.99839e7 −0.238975
\(207\) − 1.40379e8i − 1.10003i
\(208\) − 5.66067e6i − 0.0436160i
\(209\) 4.36145e7 0.330460
\(210\) 0 0
\(211\) −9.74010e7 −0.713797 −0.356899 0.934143i \(-0.616166\pi\)
−0.356899 + 0.934143i \(0.616166\pi\)
\(212\) − 9.56172e7i − 0.689224i
\(213\) 1.69767e7i 0.120372i
\(214\) −1.43885e8 −1.00361
\(215\) 0 0
\(216\) 2.59891e7 0.175470
\(217\) 2.31193e8i 1.53591i
\(218\) 9.80562e7i 0.641029i
\(219\) −1.17634e7 −0.0756794
\(220\) 0 0
\(221\) 2.03237e7 0.126657
\(222\) − 1.54105e7i − 0.0945325i
\(223\) 1.46457e7i 0.0884390i 0.999022 + 0.0442195i \(0.0140801\pi\)
−0.999022 + 0.0442195i \(0.985920\pi\)
\(224\) 3.32923e7 0.197914
\(225\) 0 0
\(226\) −1.32760e8 −0.765045
\(227\) − 1.84541e8i − 1.04713i −0.851985 0.523567i \(-0.824601\pi\)
0.851985 0.523567i \(-0.175399\pi\)
\(228\) 3.06739e7i 0.171395i
\(229\) 8.75461e6 0.0481740 0.0240870 0.999710i \(-0.492332\pi\)
0.0240870 + 0.999710i \(0.492332\pi\)
\(230\) 0 0
\(231\) 1.33137e7 0.0710650
\(232\) 5.25158e7i 0.276110i
\(233\) 1.19556e8i 0.619193i 0.950868 + 0.309597i \(0.100194\pi\)
−0.950868 + 0.309597i \(0.899806\pi\)
\(234\) −2.25874e7 −0.115242
\(235\) 0 0
\(236\) 1.69002e8 0.836952
\(237\) − 4.28016e7i − 0.208853i
\(238\) 1.19530e8i 0.574723i
\(239\) −3.96209e8 −1.87729 −0.938646 0.344883i \(-0.887919\pi\)
−0.938646 + 0.344883i \(0.887919\pi\)
\(240\) 0 0
\(241\) −2.56606e8 −1.18089 −0.590443 0.807080i \(-0.701047\pi\)
−0.590443 + 0.807080i \(0.701047\pi\)
\(242\) 1.46358e8i 0.663837i
\(243\) − 1.57319e8i − 0.703331i
\(244\) −5.29729e7 −0.233448
\(245\) 0 0
\(246\) −1.04083e6 −0.00445767
\(247\) − 5.51971e7i − 0.233065i
\(248\) 1.16507e8i 0.485031i
\(249\) −6.80747e7 −0.279440
\(250\) 0 0
\(251\) −7.34775e7 −0.293290 −0.146645 0.989189i \(-0.546847\pi\)
−0.146645 + 0.989189i \(0.546847\pi\)
\(252\) − 1.32844e8i − 0.522926i
\(253\) − 7.50335e7i − 0.291295i
\(254\) 9.34605e6 0.0357857
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) − 2.02701e8i − 0.744886i −0.928055 0.372443i \(-0.878520\pi\)
0.928055 0.372443i \(-0.121480\pi\)
\(258\) − 6.05518e7i − 0.219512i
\(259\) −1.63094e8 −0.583297
\(260\) 0 0
\(261\) 2.09551e8 0.729536
\(262\) 6.33906e7i 0.217756i
\(263\) − 1.54254e8i − 0.522867i −0.965221 0.261434i \(-0.915805\pi\)
0.965221 0.261434i \(-0.0841953\pi\)
\(264\) 6.70925e6 0.0224419
\(265\) 0 0
\(266\) 3.24632e8 1.05756
\(267\) − 1.43414e8i − 0.461108i
\(268\) 8.06426e6i 0.0255913i
\(269\) 6.24018e8 1.95463 0.977315 0.211793i \(-0.0679302\pi\)
0.977315 + 0.211793i \(0.0679302\pi\)
\(270\) 0 0
\(271\) −3.87983e8 −1.18419 −0.592094 0.805869i \(-0.701698\pi\)
−0.592094 + 0.805869i \(0.701698\pi\)
\(272\) 6.02358e7i 0.181494i
\(273\) − 1.68493e7i − 0.0501203i
\(274\) −2.52523e6 −0.00741608
\(275\) 0 0
\(276\) 5.27708e7 0.151082
\(277\) 4.53952e8i 1.28331i 0.766994 + 0.641654i \(0.221752\pi\)
−0.766994 + 0.641654i \(0.778248\pi\)
\(278\) 3.13630e8i 0.875510i
\(279\) 4.64889e8 1.28155
\(280\) 0 0
\(281\) 3.33770e8 0.897377 0.448689 0.893688i \(-0.351891\pi\)
0.448689 + 0.893688i \(0.351891\pi\)
\(282\) − 4.53750e7i − 0.120488i
\(283\) − 5.37695e8i − 1.41021i −0.709104 0.705104i \(-0.750900\pi\)
0.709104 0.705104i \(-0.249100\pi\)
\(284\) 9.05426e7 0.234552
\(285\) 0 0
\(286\) −1.20732e7 −0.0305168
\(287\) 1.10155e7i 0.0275053i
\(288\) − 6.69450e7i − 0.165137i
\(289\) 1.94072e8 0.472956
\(290\) 0 0
\(291\) 1.04186e8 0.247847
\(292\) 6.27380e7i 0.147466i
\(293\) − 3.35600e8i − 0.779445i −0.920932 0.389722i \(-0.872571\pi\)
0.920932 0.389722i \(-0.127429\pi\)
\(294\) 2.00364e7 0.0459838
\(295\) 0 0
\(296\) −8.21893e7 −0.184202
\(297\) − 5.54299e7i − 0.122771i
\(298\) − 1.75088e8i − 0.383266i
\(299\) −9.49600e7 −0.205443
\(300\) 0 0
\(301\) −6.40840e8 −1.35446
\(302\) 2.35324e8i 0.491633i
\(303\) 1.20954e8i 0.249789i
\(304\) 1.63594e8 0.333972
\(305\) 0 0
\(306\) 2.40355e8 0.479543
\(307\) 2.15029e8i 0.424143i 0.977254 + 0.212072i \(0.0680210\pi\)
−0.977254 + 0.212072i \(0.931979\pi\)
\(308\) − 7.10062e7i − 0.138474i
\(309\) −4.49759e7 −0.0867212
\(310\) 0 0
\(311\) 7.92062e8 1.49313 0.746565 0.665313i \(-0.231702\pi\)
0.746565 + 0.665313i \(0.231702\pi\)
\(312\) − 8.49101e6i − 0.0158277i
\(313\) 1.18457e8i 0.218352i 0.994022 + 0.109176i \(0.0348212\pi\)
−0.994022 + 0.109176i \(0.965179\pi\)
\(314\) 4.84440e8 0.883051
\(315\) 0 0
\(316\) −2.28275e8 −0.406962
\(317\) − 5.07310e7i − 0.0894470i −0.998999 0.0447235i \(-0.985759\pi\)
0.998999 0.0447235i \(-0.0142407\pi\)
\(318\) − 1.43426e8i − 0.250111i
\(319\) 1.12006e8 0.193186
\(320\) 0 0
\(321\) −2.15827e8 −0.364198
\(322\) − 5.58491e8i − 0.932225i
\(323\) 5.87358e8i 0.969826i
\(324\) −2.46971e8 −0.403402
\(325\) 0 0
\(326\) −4.56682e8 −0.730050
\(327\) 1.47084e8i 0.232621i
\(328\) 5.55110e6i 0.00868602i
\(329\) −4.80218e8 −0.743453
\(330\) 0 0
\(331\) 2.73757e8 0.414923 0.207461 0.978243i \(-0.433480\pi\)
0.207461 + 0.978243i \(0.433480\pi\)
\(332\) 3.63065e8i 0.544504i
\(333\) 3.27955e8i 0.486697i
\(334\) −7.01812e8 −1.03064
\(335\) 0 0
\(336\) 4.99384e7 0.0718203
\(337\) − 9.18512e7i − 0.130732i −0.997861 0.0653658i \(-0.979179\pi\)
0.997861 0.0653658i \(-0.0208214\pi\)
\(338\) − 4.86709e8i − 0.685584i
\(339\) −1.99140e8 −0.277625
\(340\) 0 0
\(341\) 2.48487e8 0.339362
\(342\) − 6.52779e8i − 0.882419i
\(343\) 6.24667e8i 0.835833i
\(344\) −3.22943e8 −0.427732
\(345\) 0 0
\(346\) −6.85563e7 −0.0889777
\(347\) − 1.36700e9i − 1.75637i −0.478318 0.878187i \(-0.658753\pi\)
0.478318 0.878187i \(-0.341247\pi\)
\(348\) 7.87738e7i 0.100197i
\(349\) −1.13143e9 −1.42475 −0.712377 0.701797i \(-0.752381\pi\)
−0.712377 + 0.701797i \(0.752381\pi\)
\(350\) 0 0
\(351\) −7.01503e7 −0.0865874
\(352\) − 3.57827e7i − 0.0437294i
\(353\) 4.48395e7i 0.0542562i 0.999632 + 0.0271281i \(0.00863620\pi\)
−0.999632 + 0.0271281i \(0.991364\pi\)
\(354\) 2.53503e8 0.303719
\(355\) 0 0
\(356\) −7.64876e8 −0.898496
\(357\) 1.79296e8i 0.208560i
\(358\) 1.50432e8i 0.173281i
\(359\) −3.98281e8 −0.454317 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(360\) 0 0
\(361\) 7.01332e8 0.784600
\(362\) 4.79700e8i 0.531483i
\(363\) 2.19536e8i 0.240898i
\(364\) −8.98632e7 −0.0976623
\(365\) 0 0
\(366\) −7.94594e7 −0.0847152
\(367\) 1.63472e9i 1.72628i 0.504964 + 0.863140i \(0.331506\pi\)
−0.504964 + 0.863140i \(0.668494\pi\)
\(368\) − 2.81444e8i − 0.294391i
\(369\) 2.21502e7 0.0229501
\(370\) 0 0
\(371\) −1.51792e9 −1.54327
\(372\) 1.74760e8i 0.176012i
\(373\) 1.54633e9i 1.54284i 0.636325 + 0.771421i \(0.280454\pi\)
−0.636325 + 0.771421i \(0.719546\pi\)
\(374\) 1.28472e8 0.126986
\(375\) 0 0
\(376\) −2.42000e8 −0.234778
\(377\) − 1.41752e8i − 0.136249i
\(378\) − 4.12577e8i − 0.392902i
\(379\) 1.05688e9 0.997216 0.498608 0.866828i \(-0.333845\pi\)
0.498608 + 0.866828i \(0.333845\pi\)
\(380\) 0 0
\(381\) 1.40191e7 0.0129862
\(382\) − 7.51889e8i − 0.690132i
\(383\) − 2.24910e8i − 0.204556i −0.994756 0.102278i \(-0.967387\pi\)
0.994756 0.102278i \(-0.0326132\pi\)
\(384\) 2.51658e7 0.0226805
\(385\) 0 0
\(386\) 2.81556e8 0.249178
\(387\) 1.28862e9i 1.13015i
\(388\) − 5.55657e8i − 0.482943i
\(389\) −1.01788e9 −0.876746 −0.438373 0.898793i \(-0.644445\pi\)
−0.438373 + 0.898793i \(0.644445\pi\)
\(390\) 0 0
\(391\) 1.01048e9 0.854887
\(392\) − 1.06861e8i − 0.0896021i
\(393\) 9.50859e7i 0.0790210i
\(394\) 8.23883e8 0.678623
\(395\) 0 0
\(396\) −1.42781e8 −0.115541
\(397\) − 1.47565e9i − 1.18363i −0.806072 0.591817i \(-0.798411\pi\)
0.806072 0.591817i \(-0.201589\pi\)
\(398\) 6.69100e8i 0.531986i
\(399\) 4.86948e8 0.383776
\(400\) 0 0
\(401\) 2.74912e8 0.212906 0.106453 0.994318i \(-0.466051\pi\)
0.106453 + 0.994318i \(0.466051\pi\)
\(402\) 1.20964e7i 0.00928676i
\(403\) − 3.14477e8i − 0.239343i
\(404\) 6.45090e8 0.486727
\(405\) 0 0
\(406\) 8.33689e8 0.618248
\(407\) 1.75294e8i 0.128881i
\(408\) 9.03537e7i 0.0658620i
\(409\) 1.63427e9 1.18112 0.590558 0.806995i \(-0.298908\pi\)
0.590558 + 0.806995i \(0.298908\pi\)
\(410\) 0 0
\(411\) −3.78785e6 −0.00269120
\(412\) 2.39871e8i 0.168981i
\(413\) − 2.68291e9i − 1.87405i
\(414\) −1.12303e9 −0.777839
\(415\) 0 0
\(416\) −4.52854e7 −0.0308412
\(417\) 4.70445e8i 0.317712i
\(418\) − 3.48916e8i − 0.233670i
\(419\) 1.11280e9 0.739039 0.369519 0.929223i \(-0.379522\pi\)
0.369519 + 0.929223i \(0.379522\pi\)
\(420\) 0 0
\(421\) 9.22528e8 0.602549 0.301274 0.953537i \(-0.402588\pi\)
0.301274 + 0.953537i \(0.402588\pi\)
\(422\) 7.79208e8i 0.504731i
\(423\) 9.65636e8i 0.620329i
\(424\) −7.64937e8 −0.487355
\(425\) 0 0
\(426\) 1.35814e8 0.0851159
\(427\) 8.40945e8i 0.522721i
\(428\) 1.15108e9i 0.709661i
\(429\) −1.81097e7 −0.0110742
\(430\) 0 0
\(431\) −9.81508e8 −0.590505 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(432\) − 2.07913e8i − 0.124076i
\(433\) − 2.84998e9i − 1.68707i −0.537071 0.843537i \(-0.680469\pi\)
0.537071 0.843537i \(-0.319531\pi\)
\(434\) 1.84954e9 1.08605
\(435\) 0 0
\(436\) 7.84450e8 0.453276
\(437\) − 2.74436e9i − 1.57310i
\(438\) 9.41071e7i 0.0535134i
\(439\) 1.05622e9 0.595838 0.297919 0.954591i \(-0.403708\pi\)
0.297919 + 0.954591i \(0.403708\pi\)
\(440\) 0 0
\(441\) −4.26401e8 −0.236746
\(442\) − 1.62590e8i − 0.0895601i
\(443\) − 1.82325e9i − 0.996401i −0.867062 0.498201i \(-0.833994\pi\)
0.867062 0.498201i \(-0.166006\pi\)
\(444\) −1.23284e8 −0.0668446
\(445\) 0 0
\(446\) 1.17166e8 0.0625358
\(447\) − 2.62633e8i − 0.139082i
\(448\) − 2.66338e8i − 0.139946i
\(449\) −1.84846e9 −0.963713 −0.481856 0.876250i \(-0.660037\pi\)
−0.481856 + 0.876250i \(0.660037\pi\)
\(450\) 0 0
\(451\) 1.18395e7 0.00607735
\(452\) 1.06208e9i 0.540968i
\(453\) 3.52985e8i 0.178407i
\(454\) −1.47633e9 −0.740435
\(455\) 0 0
\(456\) 2.45391e8 0.121194
\(457\) − 2.98066e9i − 1.46085i −0.682993 0.730425i \(-0.739322\pi\)
0.682993 0.730425i \(-0.260678\pi\)
\(458\) − 7.00369e7i − 0.0340642i
\(459\) 7.46477e8 0.360306
\(460\) 0 0
\(461\) −2.52781e9 −1.20169 −0.600843 0.799367i \(-0.705168\pi\)
−0.600843 + 0.799367i \(0.705168\pi\)
\(462\) − 1.06509e8i − 0.0502505i
\(463\) 8.90291e8i 0.416868i 0.978036 + 0.208434i \(0.0668366\pi\)
−0.978036 + 0.208434i \(0.933163\pi\)
\(464\) 4.20127e8 0.195239
\(465\) 0 0
\(466\) 9.56450e8 0.437836
\(467\) 2.65667e9i 1.20706i 0.797341 + 0.603529i \(0.206239\pi\)
−0.797341 + 0.603529i \(0.793761\pi\)
\(468\) 1.80699e8i 0.0814884i
\(469\) 1.28020e8 0.0573024
\(470\) 0 0
\(471\) 7.26660e8 0.320448
\(472\) − 1.35202e9i − 0.591814i
\(473\) 6.88777e8i 0.299271i
\(474\) −3.42413e8 −0.147681
\(475\) 0 0
\(476\) 9.56243e8 0.406391
\(477\) 3.05228e9i 1.28769i
\(478\) 3.16967e9i 1.32745i
\(479\) −1.30093e9 −0.540855 −0.270428 0.962740i \(-0.587165\pi\)
−0.270428 + 0.962740i \(0.587165\pi\)
\(480\) 0 0
\(481\) 2.21847e8 0.0908962
\(482\) 2.05285e9i 0.835012i
\(483\) − 8.37737e8i − 0.338293i
\(484\) 1.17086e9 0.469404
\(485\) 0 0
\(486\) −1.25855e9 −0.497330
\(487\) − 1.07447e9i − 0.421542i −0.977535 0.210771i \(-0.932402\pi\)
0.977535 0.210771i \(-0.0675975\pi\)
\(488\) 4.23783e8i 0.165072i
\(489\) −6.85024e8 −0.264926
\(490\) 0 0
\(491\) −7.83344e8 −0.298653 −0.149327 0.988788i \(-0.547711\pi\)
−0.149327 + 0.988788i \(0.547711\pi\)
\(492\) 8.32666e6i 0.00315205i
\(493\) 1.50839e9i 0.566958i
\(494\) −4.41577e8 −0.164802
\(495\) 0 0
\(496\) 9.32053e8 0.342969
\(497\) − 1.43736e9i − 0.525193i
\(498\) 5.44598e8i 0.197594i
\(499\) 6.23188e8 0.224526 0.112263 0.993679i \(-0.464190\pi\)
0.112263 + 0.993679i \(0.464190\pi\)
\(500\) 0 0
\(501\) −1.05272e9 −0.374007
\(502\) 5.87820e8i 0.207387i
\(503\) 2.70927e9i 0.949215i 0.880198 + 0.474607i \(0.157410\pi\)
−0.880198 + 0.474607i \(0.842590\pi\)
\(504\) −1.06275e9 −0.369764
\(505\) 0 0
\(506\) −6.00268e8 −0.205977
\(507\) − 7.30063e8i − 0.248790i
\(508\) − 7.47684e7i − 0.0253043i
\(509\) −3.49943e9 −1.17621 −0.588106 0.808784i \(-0.700126\pi\)
−0.588106 + 0.808784i \(0.700126\pi\)
\(510\) 0 0
\(511\) 9.95967e8 0.330196
\(512\) − 1.34218e8i − 0.0441942i
\(513\) − 2.02735e9i − 0.663008i
\(514\) −1.62161e9 −0.526714
\(515\) 0 0
\(516\) −4.84414e8 −0.155218
\(517\) 5.16140e8i 0.164267i
\(518\) 1.30476e9i 0.412453i
\(519\) −1.02835e8 −0.0322889
\(520\) 0 0
\(521\) −1.37683e9 −0.426530 −0.213265 0.976994i \(-0.568410\pi\)
−0.213265 + 0.976994i \(0.568410\pi\)
\(522\) − 1.67640e9i − 0.515860i
\(523\) 2.86154e9i 0.874669i 0.899299 + 0.437334i \(0.144077\pi\)
−0.899299 + 0.437334i \(0.855923\pi\)
\(524\) 5.07125e8 0.153977
\(525\) 0 0
\(526\) −1.23403e9 −0.369723
\(527\) 3.34638e9i 0.995951i
\(528\) − 5.36740e7i − 0.0158688i
\(529\) −1.31651e9 −0.386661
\(530\) 0 0
\(531\) −5.39487e9 −1.56369
\(532\) − 2.59706e9i − 0.747810i
\(533\) − 1.49836e7i − 0.00428620i
\(534\) −1.14731e9 −0.326053
\(535\) 0 0
\(536\) 6.45140e7 0.0180958
\(537\) 2.25649e8i 0.0628815i
\(538\) − 4.99215e9i − 1.38213i
\(539\) −2.27915e8 −0.0626919
\(540\) 0 0
\(541\) 5.34467e9 1.45121 0.725605 0.688111i \(-0.241560\pi\)
0.725605 + 0.688111i \(0.241560\pi\)
\(542\) 3.10387e9i 0.837347i
\(543\) 7.19550e8i 0.192869i
\(544\) 4.81886e8 0.128336
\(545\) 0 0
\(546\) −1.34795e8 −0.0354404
\(547\) − 3.37135e9i − 0.880740i −0.897816 0.440370i \(-0.854847\pi\)
0.897816 0.440370i \(-0.145153\pi\)
\(548\) 2.02019e7i 0.00524396i
\(549\) 1.69100e9 0.436153
\(550\) 0 0
\(551\) 4.09665e9 1.04327
\(552\) − 4.22167e8i − 0.106831i
\(553\) 3.62387e9i 0.911244i
\(554\) 3.63162e9 0.907436
\(555\) 0 0
\(556\) 2.50904e9 0.619079
\(557\) − 5.61106e9i − 1.37579i −0.725811 0.687894i \(-0.758535\pi\)
0.725811 0.687894i \(-0.241465\pi\)
\(558\) − 3.71911e9i − 0.906190i
\(559\) 8.71694e8 0.211068
\(560\) 0 0
\(561\) 1.92707e8 0.0460817
\(562\) − 2.67016e9i − 0.634542i
\(563\) − 6.69690e9i − 1.58159i −0.612081 0.790795i \(-0.709667\pi\)
0.612081 0.790795i \(-0.290333\pi\)
\(564\) −3.63000e8 −0.0851980
\(565\) 0 0
\(566\) −4.30156e9 −0.997168
\(567\) 3.92066e9i 0.903273i
\(568\) − 7.24341e8i − 0.165853i
\(569\) −1.96850e9 −0.447964 −0.223982 0.974593i \(-0.571906\pi\)
−0.223982 + 0.974593i \(0.571906\pi\)
\(570\) 0 0
\(571\) 1.02926e9 0.231365 0.115682 0.993286i \(-0.463094\pi\)
0.115682 + 0.993286i \(0.463094\pi\)
\(572\) 9.65852e7i 0.0215787i
\(573\) − 1.12783e9i − 0.250440i
\(574\) 8.81238e7 0.0194492
\(575\) 0 0
\(576\) −5.35560e8 −0.116770
\(577\) 3.31179e9i 0.717708i 0.933394 + 0.358854i \(0.116832\pi\)
−0.933394 + 0.358854i \(0.883168\pi\)
\(578\) − 1.55258e9i − 0.334431i
\(579\) 4.22335e8 0.0904236
\(580\) 0 0
\(581\) 5.76366e9 1.21922
\(582\) − 8.33486e8i − 0.175254i
\(583\) 1.63147e9i 0.340988i
\(584\) 5.01904e8 0.104274
\(585\) 0 0
\(586\) −2.68480e9 −0.551151
\(587\) − 5.59411e8i − 0.114156i −0.998370 0.0570778i \(-0.981822\pi\)
0.998370 0.0570778i \(-0.0181783\pi\)
\(588\) − 1.60292e8i − 0.0325155i
\(589\) 9.08843e9 1.83267
\(590\) 0 0
\(591\) 1.23582e9 0.246264
\(592\) 6.57514e8i 0.130250i
\(593\) 3.02459e9i 0.595628i 0.954624 + 0.297814i \(0.0962575\pi\)
−0.954624 + 0.297814i \(0.903742\pi\)
\(594\) −4.43439e8 −0.0868124
\(595\) 0 0
\(596\) −1.40071e9 −0.271010
\(597\) 1.00365e9i 0.193051i
\(598\) 7.59680e8i 0.145270i
\(599\) 5.63246e9 1.07079 0.535395 0.844602i \(-0.320163\pi\)
0.535395 + 0.844602i \(0.320163\pi\)
\(600\) 0 0
\(601\) 3.40792e8 0.0640366 0.0320183 0.999487i \(-0.489807\pi\)
0.0320183 + 0.999487i \(0.489807\pi\)
\(602\) 5.12672e9i 0.957749i
\(603\) − 2.57426e8i − 0.0478126i
\(604\) 1.88259e9 0.347637
\(605\) 0 0
\(606\) 9.67636e8 0.176627
\(607\) 3.85420e9i 0.699477i 0.936847 + 0.349739i \(0.113730\pi\)
−0.936847 + 0.349739i \(0.886270\pi\)
\(608\) − 1.30875e9i − 0.236154i
\(609\) 1.25053e9 0.224355
\(610\) 0 0
\(611\) 6.53211e8 0.115853
\(612\) − 1.92284e9i − 0.339088i
\(613\) − 9.22245e9i − 1.61709i −0.588434 0.808545i \(-0.700255\pi\)
0.588434 0.808545i \(-0.299745\pi\)
\(614\) 1.72023e9 0.299915
\(615\) 0 0
\(616\) −5.68050e8 −0.0979160
\(617\) 6.53611e9i 1.12027i 0.828402 + 0.560133i \(0.189250\pi\)
−0.828402 + 0.560133i \(0.810750\pi\)
\(618\) 3.59807e8i 0.0613211i
\(619\) −1.36559e9 −0.231420 −0.115710 0.993283i \(-0.536914\pi\)
−0.115710 + 0.993283i \(0.536914\pi\)
\(620\) 0 0
\(621\) −3.48782e9 −0.584431
\(622\) − 6.33649e9i − 1.05580i
\(623\) 1.21424e10i 2.01186i
\(624\) −6.79281e7 −0.0111919
\(625\) 0 0
\(626\) 9.47659e8 0.154398
\(627\) − 5.23374e8i − 0.0847960i
\(628\) − 3.87552e9i − 0.624412i
\(629\) −2.36070e9 −0.378236
\(630\) 0 0
\(631\) 1.54079e9 0.244141 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(632\) 1.82620e9i 0.287766i
\(633\) 1.16881e9i 0.183160i
\(634\) −4.05848e8 −0.0632486
\(635\) 0 0
\(636\) −1.14741e9 −0.176855
\(637\) 2.88441e8i 0.0442150i
\(638\) − 8.96052e8i − 0.136603i
\(639\) −2.89029e9 −0.438216
\(640\) 0 0
\(641\) −4.54018e9 −0.680879 −0.340440 0.940266i \(-0.610576\pi\)
−0.340440 + 0.940266i \(0.610576\pi\)
\(642\) 1.72661e9i 0.257527i
\(643\) − 1.14054e10i − 1.69189i −0.533272 0.845944i \(-0.679038\pi\)
0.533272 0.845944i \(-0.320962\pi\)
\(644\) −4.46793e9 −0.659183
\(645\) 0 0
\(646\) 4.69886e9 0.685770
\(647\) − 1.26393e10i − 1.83468i −0.398109 0.917338i \(-0.630334\pi\)
0.398109 0.917338i \(-0.369666\pi\)
\(648\) 1.97577e9i 0.285248i
\(649\) −2.88360e9 −0.414075
\(650\) 0 0
\(651\) 2.77431e9 0.394114
\(652\) 3.65346e9i 0.516223i
\(653\) 1.05004e10i 1.47575i 0.674940 + 0.737873i \(0.264170\pi\)
−0.674940 + 0.737873i \(0.735830\pi\)
\(654\) 1.17667e9 0.164488
\(655\) 0 0
\(656\) 4.44088e7 0.00614194
\(657\) − 2.00272e9i − 0.275512i
\(658\) 3.84175e9i 0.525700i
\(659\) −9.64818e9 −1.31325 −0.656624 0.754219i \(-0.728016\pi\)
−0.656624 + 0.754219i \(0.728016\pi\)
\(660\) 0 0
\(661\) −6.58299e9 −0.886580 −0.443290 0.896378i \(-0.646189\pi\)
−0.443290 + 0.896378i \(0.646189\pi\)
\(662\) − 2.19006e9i − 0.293395i
\(663\) − 2.43884e8i − 0.0325002i
\(664\) 2.90452e9 0.385023
\(665\) 0 0
\(666\) 2.62364e9 0.344147
\(667\) − 7.04779e9i − 0.919629i
\(668\) 5.61450e9i 0.728775i
\(669\) 1.75749e8 0.0226935
\(670\) 0 0
\(671\) 9.03851e8 0.115496
\(672\) − 3.99507e8i − 0.0507846i
\(673\) 8.54649e9i 1.08077i 0.841416 + 0.540387i \(0.181722\pi\)
−0.841416 + 0.540387i \(0.818278\pi\)
\(674\) −7.34810e8 −0.0924411
\(675\) 0 0
\(676\) −3.89367e9 −0.484781
\(677\) 8.71305e9i 1.07922i 0.841915 + 0.539610i \(0.181428\pi\)
−0.841915 + 0.539610i \(0.818572\pi\)
\(678\) 1.59312e9i 0.196311i
\(679\) −8.82106e9 −1.08138
\(680\) 0 0
\(681\) −2.21449e9 −0.268695
\(682\) − 1.98789e9i − 0.239965i
\(683\) − 1.46109e10i − 1.75470i −0.479849 0.877351i \(-0.659308\pi\)
0.479849 0.877351i \(-0.340692\pi\)
\(684\) −5.22223e9 −0.623965
\(685\) 0 0
\(686\) 4.99734e9 0.591023
\(687\) − 1.05055e8i − 0.0123615i
\(688\) 2.58354e9i 0.302452i
\(689\) 2.06473e9 0.240490
\(690\) 0 0
\(691\) −1.47348e10 −1.69891 −0.849454 0.527662i \(-0.823069\pi\)
−0.849454 + 0.527662i \(0.823069\pi\)
\(692\) 5.48451e8i 0.0629167i
\(693\) 2.26665e9i 0.258713i
\(694\) −1.09360e10 −1.24194
\(695\) 0 0
\(696\) 6.30190e8 0.0708499
\(697\) 1.59442e8i 0.0178357i
\(698\) 9.05146e9i 1.00745i
\(699\) 1.43467e9 0.158885
\(700\) 0 0
\(701\) 1.31502e9 0.144185 0.0720923 0.997398i \(-0.477032\pi\)
0.0720923 + 0.997398i \(0.477032\pi\)
\(702\) 5.61203e8i 0.0612265i
\(703\) 6.41141e9i 0.696001i
\(704\) −2.86261e8 −0.0309213
\(705\) 0 0
\(706\) 3.58716e8 0.0383649
\(707\) − 1.02408e10i − 1.08985i
\(708\) − 2.02803e9i − 0.214762i
\(709\) −6.64028e8 −0.0699721 −0.0349860 0.999388i \(-0.511139\pi\)
−0.0349860 + 0.999388i \(0.511139\pi\)
\(710\) 0 0
\(711\) 7.28697e9 0.760332
\(712\) 6.11901e9i 0.635333i
\(713\) − 1.56356e10i − 1.61547i
\(714\) 1.43436e9 0.147474
\(715\) 0 0
\(716\) 1.20346e9 0.122528
\(717\) 4.75451e9i 0.481713i
\(718\) 3.18624e9i 0.321250i
\(719\) −4.95034e9 −0.496689 −0.248344 0.968672i \(-0.579886\pi\)
−0.248344 + 0.968672i \(0.579886\pi\)
\(720\) 0 0
\(721\) 3.80796e9 0.378372
\(722\) − 5.61065e9i − 0.554796i
\(723\) 3.07928e9i 0.303015i
\(724\) 3.83760e9 0.375816
\(725\) 0 0
\(726\) 1.75629e9 0.170341
\(727\) 8.81101e9i 0.850463i 0.905085 + 0.425231i \(0.139807\pi\)
−0.905085 + 0.425231i \(0.860193\pi\)
\(728\) 7.18905e8i 0.0690577i
\(729\) 6.55163e9 0.626330
\(730\) 0 0
\(731\) −9.27578e9 −0.878293
\(732\) 6.35675e8i 0.0599027i
\(733\) 1.49414e8i 0.0140129i 0.999975 + 0.00700643i \(0.00223023\pi\)
−0.999975 + 0.00700643i \(0.997770\pi\)
\(734\) 1.30777e10 1.22066
\(735\) 0 0
\(736\) −2.25155e9 −0.208166
\(737\) − 1.37596e8i − 0.0126611i
\(738\) − 1.77202e8i − 0.0162282i
\(739\) 4.70806e9 0.429127 0.214564 0.976710i \(-0.431167\pi\)
0.214564 + 0.976710i \(0.431167\pi\)
\(740\) 0 0
\(741\) −6.62365e8 −0.0598045
\(742\) 1.21434e10i 1.09125i
\(743\) − 1.69676e9i − 0.151761i −0.997117 0.0758805i \(-0.975823\pi\)
0.997117 0.0758805i \(-0.0241768\pi\)
\(744\) 1.39808e9 0.124459
\(745\) 0 0
\(746\) 1.23707e10 1.09095
\(747\) − 1.15897e10i − 1.01730i
\(748\) − 1.02777e9i − 0.0897928i
\(749\) 1.82733e10 1.58903
\(750\) 0 0
\(751\) 1.06650e10 0.918800 0.459400 0.888229i \(-0.348064\pi\)
0.459400 + 0.888229i \(0.348064\pi\)
\(752\) 1.93600e9i 0.166013i
\(753\) 8.81731e8i 0.0752581i
\(754\) −1.13401e9 −0.0963427
\(755\) 0 0
\(756\) −3.30062e9 −0.277824
\(757\) 6.22876e9i 0.521874i 0.965356 + 0.260937i \(0.0840315\pi\)
−0.965356 + 0.260937i \(0.915968\pi\)
\(758\) − 8.45506e9i − 0.705138i
\(759\) −9.00402e8 −0.0747464
\(760\) 0 0
\(761\) −8.38334e9 −0.689558 −0.344779 0.938684i \(-0.612046\pi\)
−0.344779 + 0.938684i \(0.612046\pi\)
\(762\) − 1.12153e8i − 0.00918263i
\(763\) − 1.24531e10i − 1.01495i
\(764\) −6.01511e9 −0.487997
\(765\) 0 0
\(766\) −1.79928e9 −0.144643
\(767\) 3.64939e9i 0.292036i
\(768\) − 2.01327e8i − 0.0160375i
\(769\) 1.18649e10 0.940852 0.470426 0.882439i \(-0.344100\pi\)
0.470426 + 0.882439i \(0.344100\pi\)
\(770\) 0 0
\(771\) −2.43241e9 −0.191138
\(772\) − 2.25245e9i − 0.176196i
\(773\) − 5.56680e9i − 0.433488i −0.976228 0.216744i \(-0.930456\pi\)
0.976228 0.216744i \(-0.0695438\pi\)
\(774\) 1.03089e10 0.799136
\(775\) 0 0
\(776\) −4.44526e9 −0.341492
\(777\) 1.95713e9i 0.149674i
\(778\) 8.14306e9i 0.619953i
\(779\) 4.33029e8 0.0328198
\(780\) 0 0
\(781\) −1.54488e9 −0.116042
\(782\) − 8.08383e9i − 0.604496i
\(783\) − 5.20645e9i − 0.387593i
\(784\) −8.54888e8 −0.0633583
\(785\) 0 0
\(786\) 7.60687e8 0.0558763
\(787\) 1.34611e8i 0.00984395i 0.999988 + 0.00492198i \(0.00156672\pi\)
−0.999988 + 0.00492198i \(0.998433\pi\)
\(788\) − 6.59106e9i − 0.479859i
\(789\) −1.85105e9 −0.134168
\(790\) 0 0
\(791\) 1.68605e10 1.21130
\(792\) 1.14225e9i 0.0817001i
\(793\) − 1.14388e9i − 0.0814565i
\(794\) −1.18052e10 −0.836955
\(795\) 0 0
\(796\) 5.35280e9 0.376171
\(797\) − 7.41548e9i − 0.518842i −0.965764 0.259421i \(-0.916468\pi\)
0.965764 0.259421i \(-0.0835317\pi\)
\(798\) − 3.89559e9i − 0.271371i
\(799\) −6.95088e9 −0.482088
\(800\) 0 0
\(801\) 2.44163e10 1.67867
\(802\) − 2.19930e9i − 0.150548i
\(803\) − 1.07047e9i − 0.0729574i
\(804\) 9.67711e7 0.00656673
\(805\) 0 0
\(806\) −2.51581e9 −0.169241
\(807\) − 7.48822e9i − 0.501558i
\(808\) − 5.16072e9i − 0.344168i
\(809\) 1.41542e10 0.939863 0.469932 0.882703i \(-0.344279\pi\)
0.469932 + 0.882703i \(0.344279\pi\)
\(810\) 0 0
\(811\) −2.63708e10 −1.73600 −0.868001 0.496563i \(-0.834595\pi\)
−0.868001 + 0.496563i \(0.834595\pi\)
\(812\) − 6.66951e9i − 0.437168i
\(813\) 4.65580e9i 0.303863i
\(814\) 1.40236e9 0.0911324
\(815\) 0 0
\(816\) 7.22829e8 0.0465715
\(817\) 2.51921e10i 1.61617i
\(818\) − 1.30742e10i − 0.835176i
\(819\) 2.86860e9 0.182464
\(820\) 0 0
\(821\) 8.06264e9 0.508483 0.254241 0.967141i \(-0.418174\pi\)
0.254241 + 0.967141i \(0.418174\pi\)
\(822\) 3.03028e7i 0.00190297i
\(823\) 2.34202e10i 1.46451i 0.681033 + 0.732253i \(0.261531\pi\)
−0.681033 + 0.732253i \(0.738469\pi\)
\(824\) 1.91897e9 0.119488
\(825\) 0 0
\(826\) −2.14633e10 −1.32515
\(827\) 5.55722e9i 0.341655i 0.985301 + 0.170828i \(0.0546442\pi\)
−0.985301 + 0.170828i \(0.945356\pi\)
\(828\) 8.98423e9i 0.550015i
\(829\) −2.84256e10 −1.73288 −0.866440 0.499281i \(-0.833597\pi\)
−0.866440 + 0.499281i \(0.833597\pi\)
\(830\) 0 0
\(831\) 5.44743e9 0.329297
\(832\) 3.62283e8i 0.0218080i
\(833\) − 3.06933e9i − 0.183987i
\(834\) 3.76356e9 0.224656
\(835\) 0 0
\(836\) −2.79133e9 −0.165230
\(837\) − 1.15505e10i − 0.680868i
\(838\) − 8.90238e9i − 0.522579i
\(839\) −1.04036e10 −0.608156 −0.304078 0.952647i \(-0.598348\pi\)
−0.304078 + 0.952647i \(0.598348\pi\)
\(840\) 0 0
\(841\) −6.72927e9 −0.390105
\(842\) − 7.38023e9i − 0.426066i
\(843\) − 4.00524e9i − 0.230267i
\(844\) 6.23367e9 0.356899
\(845\) 0 0
\(846\) 7.72509e9 0.438639
\(847\) − 1.85874e10i − 1.05106i
\(848\) 6.11950e9i 0.344612i
\(849\) −6.45234e9 −0.361860
\(850\) 0 0
\(851\) 1.10301e10 0.613514
\(852\) − 1.08651e9i − 0.0601860i
\(853\) 1.80580e10i 0.996205i 0.867118 + 0.498102i \(0.165970\pi\)
−0.867118 + 0.498102i \(0.834030\pi\)
\(854\) 6.72756e9 0.369620
\(855\) 0 0
\(856\) 9.20861e9 0.501806
\(857\) − 6.34034e9i − 0.344096i −0.985089 0.172048i \(-0.944962\pi\)
0.985089 0.172048i \(-0.0550384\pi\)
\(858\) 1.44878e8i 0.00783062i
\(859\) −1.21489e10 −0.653973 −0.326987 0.945029i \(-0.606033\pi\)
−0.326987 + 0.945029i \(0.606033\pi\)
\(860\) 0 0
\(861\) 1.32186e8 0.00705786
\(862\) 7.85206e9i 0.417550i
\(863\) 2.87111e10i 1.52059i 0.649578 + 0.760295i \(0.274946\pi\)
−0.649578 + 0.760295i \(0.725054\pi\)
\(864\) −1.66330e9 −0.0877351
\(865\) 0 0
\(866\) −2.27998e10 −1.19294
\(867\) − 2.32887e9i − 0.121361i
\(868\) − 1.47963e10i − 0.767954i
\(869\) 3.89495e9 0.201341
\(870\) 0 0
\(871\) −1.74138e8 −0.00892953
\(872\) − 6.27560e9i − 0.320514i
\(873\) 1.77376e10i 0.902289i
\(874\) −2.19549e10 −1.11235
\(875\) 0 0
\(876\) 7.52857e8 0.0378397
\(877\) 2.46021e10i 1.23161i 0.787898 + 0.615806i \(0.211169\pi\)
−0.787898 + 0.615806i \(0.788831\pi\)
\(878\) − 8.44975e9i − 0.421321i
\(879\) −4.02720e9 −0.200006
\(880\) 0 0
\(881\) −1.25378e10 −0.617738 −0.308869 0.951105i \(-0.599951\pi\)
−0.308869 + 0.951105i \(0.599951\pi\)
\(882\) 3.41121e9i 0.167405i
\(883\) − 1.93097e10i − 0.943873i −0.881633 0.471937i \(-0.843555\pi\)
0.881633 0.471937i \(-0.156445\pi\)
\(884\) −1.30072e9 −0.0633286
\(885\) 0 0
\(886\) −1.45860e10 −0.704562
\(887\) 3.20268e10i 1.54092i 0.637486 + 0.770462i \(0.279974\pi\)
−0.637486 + 0.770462i \(0.720026\pi\)
\(888\) 9.86272e8i 0.0472663i
\(889\) −1.18695e9 −0.0566599
\(890\) 0 0
\(891\) 4.21394e9 0.199580
\(892\) − 9.37327e8i − 0.0442195i
\(893\) 1.88779e10i 0.887101i
\(894\) −2.10106e9 −0.0983461
\(895\) 0 0
\(896\) −2.13071e9 −0.0989568
\(897\) 1.13952e9i 0.0527167i
\(898\) 1.47877e10i 0.681448i
\(899\) 2.33400e10 1.07138
\(900\) 0 0
\(901\) −2.19710e10 −1.00072
\(902\) − 9.47157e7i − 0.00429733i
\(903\) 7.69008e9i 0.347555i
\(904\) 8.49662e9 0.382522
\(905\) 0 0
\(906\) 2.82388e9 0.126153
\(907\) 2.33703e9i 0.104002i 0.998647 + 0.0520008i \(0.0165598\pi\)
−0.998647 + 0.0520008i \(0.983440\pi\)
\(908\) 1.18106e10i 0.523567i
\(909\) −2.05925e10 −0.909359
\(910\) 0 0
\(911\) 2.20343e10 0.965573 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(912\) − 1.96313e9i − 0.0856973i
\(913\) − 6.19480e9i − 0.269389i
\(914\) −2.38453e10 −1.03298
\(915\) 0 0
\(916\) −5.60295e8 −0.0240870
\(917\) − 8.05061e9i − 0.344775i
\(918\) − 5.97181e9i − 0.254775i
\(919\) 1.43277e10 0.608938 0.304469 0.952522i \(-0.401521\pi\)
0.304469 + 0.952522i \(0.401521\pi\)
\(920\) 0 0
\(921\) 2.58035e9 0.108835
\(922\) 2.02225e10i 0.849720i
\(923\) 1.95515e9i 0.0818418i
\(924\) −8.52074e8 −0.0355325
\(925\) 0 0
\(926\) 7.12233e9 0.294770
\(927\) − 7.65715e9i − 0.315710i
\(928\) − 3.36101e9i − 0.138055i
\(929\) −1.31280e10 −0.537208 −0.268604 0.963251i \(-0.586562\pi\)
−0.268604 + 0.963251i \(0.586562\pi\)
\(930\) 0 0
\(931\) −8.33600e9 −0.338558
\(932\) − 7.65160e9i − 0.309597i
\(933\) − 9.50474e9i − 0.383137i
\(934\) 2.12533e10 0.853519
\(935\) 0 0
\(936\) 1.44559e9 0.0576210
\(937\) − 3.87626e10i − 1.53930i −0.638463 0.769652i \(-0.720429\pi\)
0.638463 0.769652i \(-0.279571\pi\)
\(938\) − 1.02416e9i − 0.0405189i
\(939\) 1.42149e9 0.0560291
\(940\) 0 0
\(941\) 2.06279e10 0.807035 0.403517 0.914972i \(-0.367788\pi\)
0.403517 + 0.914972i \(0.367788\pi\)
\(942\) − 5.81328e9i − 0.226591i
\(943\) − 7.44976e8i − 0.0289302i
\(944\) −1.08161e10 −0.418476
\(945\) 0 0
\(946\) 5.51021e9 0.211617
\(947\) − 2.11705e10i − 0.810040i −0.914308 0.405020i \(-0.867264\pi\)
0.914308 0.405020i \(-0.132736\pi\)
\(948\) 2.73930e9i 0.104427i
\(949\) −1.35475e9 −0.0514550
\(950\) 0 0
\(951\) −6.08771e8 −0.0229521
\(952\) − 7.64994e9i − 0.287362i
\(953\) − 2.14876e10i − 0.804196i −0.915597 0.402098i \(-0.868281\pi\)
0.915597 0.402098i \(-0.131719\pi\)
\(954\) 2.44182e10 0.910531
\(955\) 0 0
\(956\) 2.53574e10 0.938646
\(957\) − 1.34408e9i − 0.0495715i
\(958\) 1.04075e10i 0.382442i
\(959\) 3.20704e8 0.0117419
\(960\) 0 0
\(961\) 2.42673e10 0.882043
\(962\) − 1.77478e9i − 0.0642733i
\(963\) − 3.67445e10i − 1.32587i
\(964\) 1.64228e10 0.590443
\(965\) 0 0
\(966\) −6.70189e9 −0.239209
\(967\) 3.92625e10i 1.39632i 0.715941 + 0.698161i \(0.245998\pi\)
−0.715941 + 0.698161i \(0.754002\pi\)
\(968\) − 9.36689e9i − 0.331919i
\(969\) 7.04829e9 0.248857
\(970\) 0 0
\(971\) −5.62647e10 −1.97228 −0.986140 0.165917i \(-0.946941\pi\)
−0.986140 + 0.165917i \(0.946941\pi\)
\(972\) 1.00684e10i 0.351665i
\(973\) − 3.98310e10i − 1.38620i
\(974\) −8.59573e9 −0.298076
\(975\) 0 0
\(976\) 3.39027e9 0.116724
\(977\) − 8.43437e9i − 0.289349i −0.989479 0.144674i \(-0.953787\pi\)
0.989479 0.144674i \(-0.0462135\pi\)
\(978\) 5.48019e9i 0.187331i
\(979\) 1.30507e10 0.444523
\(980\) 0 0
\(981\) −2.50411e10 −0.846861
\(982\) 6.26675e9i 0.211180i
\(983\) 2.24230e10i 0.752932i 0.926430 + 0.376466i \(0.122861\pi\)
−0.926430 + 0.376466i \(0.877139\pi\)
\(984\) 6.66132e7 0.00222883
\(985\) 0 0
\(986\) 1.20672e10 0.400900
\(987\) 5.76262e9i 0.190770i
\(988\) 3.53261e9i 0.116532i
\(989\) 4.33400e10 1.42463
\(990\) 0 0
\(991\) 3.46728e10 1.13170 0.565849 0.824509i \(-0.308548\pi\)
0.565849 + 0.824509i \(0.308548\pi\)
\(992\) − 7.45642e9i − 0.242516i
\(993\) − 3.28508e9i − 0.106469i
\(994\) −1.14989e10 −0.371368
\(995\) 0 0
\(996\) 4.35678e9 0.139720
\(997\) − 2.96474e10i − 0.947444i −0.880674 0.473722i \(-0.842910\pi\)
0.880674 0.473722i \(-0.157090\pi\)
\(998\) − 4.98550e9i − 0.158764i
\(999\) 8.14830e9 0.258576
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.8.b.c.49.1 2
3.2 odd 2 450.8.c.g.199.2 2
4.3 odd 2 400.8.c.j.49.2 2
5.2 odd 4 50.8.a.g.1.1 1
5.3 odd 4 2.8.a.a.1.1 1
5.4 even 2 inner 50.8.b.c.49.2 2
15.2 even 4 450.8.a.c.1.1 1
15.8 even 4 18.8.a.b.1.1 1
15.14 odd 2 450.8.c.g.199.1 2
20.3 even 4 16.8.a.b.1.1 1
20.7 even 4 400.8.a.l.1.1 1
20.19 odd 2 400.8.c.j.49.1 2
35.3 even 12 98.8.c.e.79.1 2
35.13 even 4 98.8.a.a.1.1 1
35.18 odd 12 98.8.c.d.79.1 2
35.23 odd 12 98.8.c.d.67.1 2
35.33 even 12 98.8.c.e.67.1 2
40.3 even 4 64.8.a.e.1.1 1
40.13 odd 4 64.8.a.c.1.1 1
45.13 odd 12 162.8.c.l.55.1 2
45.23 even 12 162.8.c.a.55.1 2
45.38 even 12 162.8.c.a.109.1 2
45.43 odd 12 162.8.c.l.109.1 2
55.43 even 4 242.8.a.e.1.1 1
60.23 odd 4 144.8.a.i.1.1 1
65.8 even 4 338.8.b.d.337.1 2
65.18 even 4 338.8.b.d.337.2 2
65.38 odd 4 338.8.a.d.1.1 1
80.3 even 4 256.8.b.f.129.1 2
80.13 odd 4 256.8.b.b.129.2 2
80.43 even 4 256.8.b.f.129.2 2
80.53 odd 4 256.8.b.b.129.1 2
85.33 odd 4 578.8.a.b.1.1 1
120.53 even 4 576.8.a.g.1.1 1
120.83 odd 4 576.8.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 5.3 odd 4
16.8.a.b.1.1 1 20.3 even 4
18.8.a.b.1.1 1 15.8 even 4
50.8.a.g.1.1 1 5.2 odd 4
50.8.b.c.49.1 2 1.1 even 1 trivial
50.8.b.c.49.2 2 5.4 even 2 inner
64.8.a.c.1.1 1 40.13 odd 4
64.8.a.e.1.1 1 40.3 even 4
98.8.a.a.1.1 1 35.13 even 4
98.8.c.d.67.1 2 35.23 odd 12
98.8.c.d.79.1 2 35.18 odd 12
98.8.c.e.67.1 2 35.33 even 12
98.8.c.e.79.1 2 35.3 even 12
144.8.a.i.1.1 1 60.23 odd 4
162.8.c.a.55.1 2 45.23 even 12
162.8.c.a.109.1 2 45.38 even 12
162.8.c.l.55.1 2 45.13 odd 12
162.8.c.l.109.1 2 45.43 odd 12
242.8.a.e.1.1 1 55.43 even 4
256.8.b.b.129.1 2 80.53 odd 4
256.8.b.b.129.2 2 80.13 odd 4
256.8.b.f.129.1 2 80.3 even 4
256.8.b.f.129.2 2 80.43 even 4
338.8.a.d.1.1 1 65.38 odd 4
338.8.b.d.337.1 2 65.8 even 4
338.8.b.d.337.2 2 65.18 even 4
400.8.a.l.1.1 1 20.7 even 4
400.8.c.j.49.1 2 20.19 odd 2
400.8.c.j.49.2 2 4.3 odd 2
450.8.a.c.1.1 1 15.2 even 4
450.8.c.g.199.1 2 15.14 odd 2
450.8.c.g.199.2 2 3.2 odd 2
576.8.a.f.1.1 1 120.83 odd 4
576.8.a.g.1.1 1 120.53 even 4
578.8.a.b.1.1 1 85.33 odd 4