Properties

Label 50.6.b.c
Level $50$
Weight $6$
Character orbit 50.b
Analytic conductor $8.019$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,6,Mod(49,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-32,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.01919099065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{2} - 11 i q^{3} - 16 q^{4} + 44 q^{6} + 142 i q^{7} - 64 i q^{8} + 122 q^{9} + 777 q^{11} + 176 i q^{12} + 884 i q^{13} - 568 q^{14} + 256 q^{16} + 27 i q^{17} + 488 i q^{18} - 1145 q^{19} + 1562 q^{21} + \cdots + 94794 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 88 q^{6} + 244 q^{9} + 1554 q^{11} - 1136 q^{14} + 512 q^{16} - 2290 q^{19} + 3124 q^{21} - 1408 q^{24} - 7072 q^{26} + 9840 q^{29} + 3604 q^{31} - 216 q^{34} - 3904 q^{36} + 19448 q^{39}+ \cdots + 189588 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
4.00000i 11.0000i −16.0000 0 44.0000 142.000i 64.0000i 122.000 0
49.2 4.00000i 11.0000i −16.0000 0 44.0000 142.000i 64.0000i 122.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.6.b.c 2
3.b odd 2 1 450.6.c.a 2
4.b odd 2 1 400.6.c.g 2
5.b even 2 1 inner 50.6.b.c 2
5.c odd 4 1 50.6.a.a 1
5.c odd 4 1 50.6.a.f yes 1
15.d odd 2 1 450.6.c.a 2
15.e even 4 1 450.6.a.j 1
15.e even 4 1 450.6.a.n 1
20.d odd 2 1 400.6.c.g 2
20.e even 4 1 400.6.a.e 1
20.e even 4 1 400.6.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.6.a.a 1 5.c odd 4 1
50.6.a.f yes 1 5.c odd 4 1
50.6.b.c 2 1.a even 1 1 trivial
50.6.b.c 2 5.b even 2 1 inner
400.6.a.e 1 20.e even 4 1
400.6.a.j 1 20.e even 4 1
400.6.c.g 2 4.b odd 2 1
400.6.c.g 2 20.d odd 2 1
450.6.a.j 1 15.e even 4 1
450.6.a.n 1 15.e even 4 1
450.6.c.a 2 3.b odd 2 1
450.6.c.a 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 121 \) acting on \(S_{6}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 121 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 20164 \) Copy content Toggle raw display
$11$ \( (T - 777)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 781456 \) Copy content Toggle raw display
$17$ \( T^{2} + 729 \) Copy content Toggle raw display
$19$ \( (T + 1145)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3437316 \) Copy content Toggle raw display
$29$ \( (T - 4920)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1802)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 173659684 \) Copy content Toggle raw display
$41$ \( (T + 15123)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 61528336 \) Copy content Toggle raw display
$47$ \( T^{2} + 45319824 \) Copy content Toggle raw display
$53$ \( T^{2} + 11655396 \) Copy content Toggle raw display
$59$ \( (T + 33960)^{2} \) Copy content Toggle raw display
$61$ \( (T - 47402)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 173633329 \) Copy content Toggle raw display
$71$ \( (T + 7548)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 3578552041 \) Copy content Toggle raw display
$79$ \( (T + 75830)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2143597401 \) Copy content Toggle raw display
$89$ \( (T - 30585)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 10819744324 \) Copy content Toggle raw display
show more
show less