Properties

Label 50.6.b
Level $50$
Weight $6$
Character orbit 50.b
Rep. character $\chi_{50}(49,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $45$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(45\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(50, [\chi])\).

Total New Old
Modular forms 44 8 36
Cusp forms 32 8 24
Eisenstein series 12 0 12

Trace form

\( 8 q - 128 q^{4} + 152 q^{6} - 874 q^{9} + O(q^{10}) \) \( 8 q - 128 q^{4} + 152 q^{6} - 874 q^{9} + 666 q^{11} - 1744 q^{14} + 2048 q^{16} - 10 q^{19} - 5404 q^{21} - 2432 q^{24} + 9712 q^{26} + 4860 q^{29} - 13484 q^{31} - 5064 q^{34} + 13984 q^{36} + 49192 q^{39} - 25434 q^{41} - 10656 q^{44} - 14928 q^{46} + 6144 q^{49} - 20574 q^{51} + 31480 q^{54} + 27904 q^{56} - 70680 q^{59} + 119416 q^{61} - 32768 q^{64} - 107496 q^{66} - 252348 q^{69} + 161016 q^{71} + 58496 q^{74} + 160 q^{76} + 11060 q^{79} + 27448 q^{81} + 86464 q^{84} - 207008 q^{86} + 89430 q^{89} - 184624 q^{91} + 91776 q^{94} + 38912 q^{96} + 846252 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.6.b.a 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{2}+12iq^{3}-2^{4}q^{4}-96q^{6}+\cdots\)
50.6.b.b 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{2}-3iq^{3}-2^{4}q^{4}+24q^{6}+\cdots\)
50.6.b.c 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 50.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4iq^{2}-11iq^{3}-2^{4}q^{4}+44q^{6}+\cdots\)
50.6.b.d 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{2}-13iq^{3}-2^{4}q^{4}+104q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)