Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(45\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 8 | 36 |
Cusp forms | 32 | 8 | 24 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.6.b.a | $2$ | $8.019$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2iq^{2}+12iq^{3}-2^{4}q^{4}-96q^{6}+\cdots\) |
50.6.b.b | $2$ | $8.019$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2iq^{2}-3iq^{3}-2^{4}q^{4}+24q^{6}+\cdots\) |
50.6.b.c | $2$ | $8.019$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+4iq^{2}-11iq^{3}-2^{4}q^{4}+44q^{6}+\cdots\) |
50.6.b.d | $2$ | $8.019$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2iq^{2}-13iq^{3}-2^{4}q^{4}+104q^{6}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)