Properties

Label 50.6.a.d
Level $50$
Weight $6$
Character orbit 50.a
Self dual yes
Analytic conductor $8.019$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,6,Mod(1,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.01919099065\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} - 24 q^{3} + 16 q^{4} - 96 q^{6} + 172 q^{7} + 64 q^{8} + 333 q^{9} + 132 q^{11} - 384 q^{12} + 946 q^{13} + 688 q^{14} + 256 q^{16} + 222 q^{17} + 1332 q^{18} + 500 q^{19} - 4128 q^{21} + 528 q^{22}+ \cdots + 43956 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −24.0000 16.0000 0 −96.0000 172.000 64.0000 333.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.6.a.d 1
3.b odd 2 1 450.6.a.l 1
4.b odd 2 1 400.6.a.n 1
5.b even 2 1 10.6.a.b 1
5.c odd 4 2 50.6.b.a 2
15.d odd 2 1 90.6.a.d 1
15.e even 4 2 450.6.c.h 2
20.d odd 2 1 80.6.a.a 1
20.e even 4 2 400.6.c.b 2
35.c odd 2 1 490.6.a.a 1
40.e odd 2 1 320.6.a.o 1
40.f even 2 1 320.6.a.b 1
60.h even 2 1 720.6.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.a.b 1 5.b even 2 1
50.6.a.d 1 1.a even 1 1 trivial
50.6.b.a 2 5.c odd 4 2
80.6.a.a 1 20.d odd 2 1
90.6.a.d 1 15.d odd 2 1
320.6.a.b 1 40.f even 2 1
320.6.a.o 1 40.e odd 2 1
400.6.a.n 1 4.b odd 2 1
400.6.c.b 2 20.e even 4 2
450.6.a.l 1 3.b odd 2 1
450.6.c.h 2 15.e even 4 2
490.6.a.a 1 35.c odd 2 1
720.6.a.j 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 24 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T + 24 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 172 \) Copy content Toggle raw display
$11$ \( T - 132 \) Copy content Toggle raw display
$13$ \( T - 946 \) Copy content Toggle raw display
$17$ \( T - 222 \) Copy content Toggle raw display
$19$ \( T - 500 \) Copy content Toggle raw display
$23$ \( T + 3564 \) Copy content Toggle raw display
$29$ \( T - 2190 \) Copy content Toggle raw display
$31$ \( T - 2312 \) Copy content Toggle raw display
$37$ \( T - 11242 \) Copy content Toggle raw display
$41$ \( T - 1242 \) Copy content Toggle raw display
$43$ \( T + 20624 \) Copy content Toggle raw display
$47$ \( T + 6588 \) Copy content Toggle raw display
$53$ \( T - 21066 \) Copy content Toggle raw display
$59$ \( T - 7980 \) Copy content Toggle raw display
$61$ \( T - 16622 \) Copy content Toggle raw display
$67$ \( T + 1808 \) Copy content Toggle raw display
$71$ \( T + 24528 \) Copy content Toggle raw display
$73$ \( T + 20474 \) Copy content Toggle raw display
$79$ \( T + 46240 \) Copy content Toggle raw display
$83$ \( T - 51576 \) Copy content Toggle raw display
$89$ \( T + 110310 \) Copy content Toggle raw display
$97$ \( T - 78382 \) Copy content Toggle raw display
show more
show less