Properties

Label 50.6
Level 50
Weight 6
Dimension 115
Nonzero newspaces 4
Newform subspaces 14
Sturm bound 900
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 14 \)
Sturm bound: \(900\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(50))\).

Total New Old
Modular forms 403 115 288
Cusp forms 347 115 232
Eisenstein series 56 0 56

Trace form

\( 115 q + 8 q^{2} - 8 q^{3} - 32 q^{4} - 85 q^{5} + 160 q^{6} + 624 q^{7} + 128 q^{8} - 1306 q^{9} + 180 q^{10} + 1480 q^{11} - 128 q^{12} - 228 q^{13} - 3136 q^{14} - 820 q^{15} - 2560 q^{16} + 1984 q^{17}+ \cdots + 1272548 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.6.a \(\chi_{50}(1, \cdot)\) 50.6.a.a 1 1
50.6.a.b 1
50.6.a.c 1
50.6.a.d 1
50.6.a.e 1
50.6.a.f 1
50.6.a.g 1
50.6.b \(\chi_{50}(49, \cdot)\) 50.6.b.a 2 1
50.6.b.b 2
50.6.b.c 2
50.6.b.d 2
50.6.d \(\chi_{50}(11, \cdot)\) 50.6.d.a 24 4
50.6.d.b 28
50.6.e \(\chi_{50}(9, \cdot)\) 50.6.e.a 48 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)