Properties

Label 50.5.c
Level $50$
Weight $5$
Character orbit 50.c
Rep. character $\chi_{50}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $4$
Sturm bound $37$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(37\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(50, [\chi])\).

Total New Old
Modular forms 72 12 60
Cusp forms 48 12 36
Eisenstein series 24 0 24

Trace form

\( 12 q - 20 q^{3} + 128 q^{6} - 20 q^{7} - 336 q^{11} - 160 q^{12} + 60 q^{13} - 768 q^{16} + 1020 q^{17} + 640 q^{18} + 2024 q^{21} - 1280 q^{22} - 1620 q^{23} - 192 q^{26} - 320 q^{27} + 160 q^{28} - 1416 q^{31}+ \cdots - 3840 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.5.c.a 50.c 5.c $2$ $5.168$ \(\Q(\sqrt{-1}) \) None 10.5.c.b \(-4\) \(-2\) \(0\) \(38\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2 i-2)q^{2}+(i-1)q^{3}+8 i q^{4}+\cdots\)
50.5.c.b 50.c 5.c $2$ $5.168$ \(\Q(\sqrt{-1}) \) None 10.5.c.a \(4\) \(-18\) \(0\) \(-58\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2 i+2)q^{2}+(9 i-9)q^{3}+8 i q^{4}+\cdots\)
50.5.c.c 50.c 5.c $4$ $5.168$ \(\Q(i, \sqrt{6})\) None 50.5.c.c \(-8\) \(-24\) \(0\) \(-144\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2+2\beta _{2})q^{2}+(-6+\beta _{1}-6\beta _{2}+\cdots)q^{3}+\cdots\)
50.5.c.d 50.c 5.c $4$ $5.168$ \(\Q(i, \sqrt{6})\) None 50.5.c.c \(8\) \(24\) \(0\) \(144\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2-2\beta _{2})q^{2}+(6+\beta _{1}+6\beta _{2})q^{3}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)