Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(37\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 12 | 60 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.5.c.a | $2$ | $5.168$ | \(\Q(\sqrt{-1}) \) | None | \(-4\) | \(-2\) | \(0\) | \(38\) | \(q+(-2 i-2)q^{2}+(i-1)q^{3}+8 i q^{4}+\cdots\) |
50.5.c.b | $2$ | $5.168$ | \(\Q(\sqrt{-1}) \) | None | \(4\) | \(-18\) | \(0\) | \(-58\) | \(q+(2 i+2)q^{2}+(9 i-9)q^{3}+8 i q^{4}+\cdots\) |
50.5.c.c | $4$ | $5.168$ | \(\Q(i, \sqrt{6})\) | None | \(-8\) | \(-24\) | \(0\) | \(-144\) | \(q+(-2+2\beta _{2})q^{2}+(-6+\beta _{1}-6\beta _{2}+\cdots)q^{3}+\cdots\) |
50.5.c.d | $4$ | $5.168$ | \(\Q(i, \sqrt{6})\) | None | \(8\) | \(24\) | \(0\) | \(144\) | \(q+(2-2\beta _{2})q^{2}+(6+\beta _{1}+6\beta _{2})q^{3}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)