Properties

Label 50.5
Level 50
Weight 5
Dimension 92
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 750
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(750\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(50))\).

Total New Old
Modular forms 328 92 236
Cusp forms 272 92 180
Eisenstein series 56 0 56

Trace form

\( 92 q - 40 q^{3} + 60 q^{5} + 128 q^{6} - 40 q^{7} - 160 q^{10} - 336 q^{11} - 320 q^{12} + 120 q^{13} - 20 q^{15} + 512 q^{16} - 60 q^{17} + 1280 q^{18} + 2600 q^{19} + 480 q^{20} + 2024 q^{21} + 640 q^{22}+ \cdots - 7680 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.5.c \(\chi_{50}(7, \cdot)\) 50.5.c.a 2 2
50.5.c.b 2
50.5.c.c 4
50.5.c.d 4
50.5.f \(\chi_{50}(3, \cdot)\) 50.5.f.a 40 8
50.5.f.b 40

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)