Defining parameters
Level: | \( N \) | = | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(750\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(50))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 328 | 92 | 236 |
Cusp forms | 272 | 92 | 180 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(50))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
50.5.c | \(\chi_{50}(7, \cdot)\) | 50.5.c.a | 2 | 2 |
50.5.c.b | 2 | |||
50.5.c.c | 4 | |||
50.5.c.d | 4 | |||
50.5.f | \(\chi_{50}(3, \cdot)\) | 50.5.f.a | 40 | 8 |
50.5.f.b | 40 |
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)