Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [50,4,Mod(9,50)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(50, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([7]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("50.9");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.e (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95009550029\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −1.17557 | + | 1.61803i | −9.37926 | + | 3.04751i | −1.23607 | − | 3.80423i | 9.19742 | − | 6.35669i | 6.09501 | − | 18.7585i | − | 2.82989i | 7.60845 | + | 2.47214i | 56.8397 | − | 41.2965i | −0.526876 | + | 22.3545i | |
9.2 | −1.17557 | + | 1.61803i | −1.91394 | + | 0.621877i | −1.23607 | − | 3.80423i | −11.1347 | + | 1.00973i | 1.24375 | − | 3.82788i | − | 29.3318i | 7.60845 | + | 2.47214i | −18.5670 | + | 13.4897i | 11.4558 | − | 19.2033i | |
9.3 | −1.17557 | + | 1.61803i | 0.234870 | − | 0.0763140i | −1.23607 | − | 3.80423i | 5.37427 | + | 9.80394i | −0.152628 | + | 0.469741i | 19.9138i | 7.60845 | + | 2.47214i | −21.7941 | + | 15.8344i | −22.1809 | − | 2.82947i | ||
9.4 | −1.17557 | + | 1.61803i | 5.96909 | − | 1.93948i | −1.23607 | − | 3.80423i | 5.14683 | − | 9.92523i | −3.87895 | + | 11.9382i | − | 9.80956i | 7.60845 | + | 2.47214i | 10.0250 | − | 7.28362i | 10.0089 | + | 19.9956i | |
9.5 | 1.17557 | − | 1.61803i | −6.75819 | + | 2.19587i | −1.23607 | − | 3.80423i | −8.51031 | + | 7.25084i | −4.39174 | + | 13.5164i | 23.3487i | −7.60845 | − | 2.47214i | 19.0078 | − | 13.8100i | 1.72764 | + | 22.2938i | ||
9.6 | 1.17557 | − | 1.61803i | −4.16531 | + | 1.35339i | −1.23607 | − | 3.80423i | −1.15597 | − | 11.1204i | −2.70679 | + | 8.33063i | − | 31.2051i | −7.60845 | − | 2.47214i | −6.32528 | + | 4.59559i | −19.3521 | − | 11.2024i | |
9.7 | 1.17557 | − | 1.61803i | 4.78125 | − | 1.55352i | −1.23607 | − | 3.80423i | 7.44908 | + | 8.33734i | 3.10704 | − | 9.56250i | − | 11.4048i | −7.60845 | − | 2.47214i | −1.39654 | + | 1.01465i | 22.2470 | − | 2.25173i | |
9.8 | 1.17557 | − | 1.61803i | 6.75935 | − | 2.19625i | −1.23607 | − | 3.80423i | −6.04044 | − | 9.40814i | 4.39249 | − | 13.5187i | 25.2037i | −7.60845 | − | 2.47214i | 19.0219 | − | 13.8202i | −22.3237 | − | 1.28629i | ||
19.1 | −1.90211 | + | 0.618034i | −4.41051 | − | 6.07054i | 3.23607 | − | 2.35114i | −3.40245 | + | 10.6500i | 12.1411 | + | 8.82101i | 17.5556i | −4.70228 | + | 6.47214i | −9.05545 | + | 27.8698i | −0.110239 | − | 22.3604i | ||
19.2 | −1.90211 | + | 0.618034i | −0.184196 | − | 0.253524i | 3.23607 | − | 2.35114i | −9.32973 | − | 6.16085i | 0.507047 | + | 0.368391i | − | 8.77601i | −4.70228 | + | 6.47214i | 8.31311 | − | 25.5851i | 21.5538 | + | 5.95254i | |
19.3 | −1.90211 | + | 0.618034i | 2.86980 | + | 3.94994i | 3.23607 | − | 2.35114i | 7.54709 | − | 8.24872i | −7.89989 | − | 5.73960i | 32.3828i | −4.70228 | + | 6.47214i | 0.977169 | − | 3.00742i | −9.25744 | + | 20.3544i | ||
19.4 | −1.90211 | + | 0.618034i | 5.72432 | + | 7.87886i | 3.23607 | − | 2.35114i | −3.73936 | + | 10.5365i | −15.7577 | − | 11.4486i | − | 26.8849i | −4.70228 | + | 6.47214i | −20.9650 | + | 64.5237i | 0.600782 | − | 22.3526i | |
19.5 | 1.90211 | − | 0.618034i | −5.11745 | − | 7.04356i | 3.23607 | − | 2.35114i | −8.52044 | + | 7.23893i | −14.0871 | − | 10.2349i | − | 24.3678i | 4.70228 | − | 6.47214i | −15.0801 | + | 46.4116i | −11.7329 | + | 19.0352i | |
19.6 | 1.90211 | − | 0.618034i | −1.78443 | − | 2.45606i | 3.23607 | − | 2.35114i | 3.46177 | − | 10.6309i | −4.91212 | − | 3.56886i | 1.93842i | 4.70228 | − | 6.47214i | 5.49543 | − | 16.9132i | 0.0144147 | − | 22.3607i | ||
19.7 | 1.90211 | − | 0.618034i | 1.87704 | + | 2.58353i | 3.23607 | − | 2.35114i | 4.46514 | + | 10.2500i | 5.16706 | + | 3.75409i | − | 2.29951i | 4.70228 | − | 6.47214i | 5.19213 | − | 15.9797i | 14.8281 | + | 16.7370i | |
19.8 | 1.90211 | − | 0.618034i | 5.49755 | + | 7.56672i | 3.23607 | − | 2.35114i | −5.80826 | − | 9.55322i | 15.1334 | + | 10.9951i | 11.0064i | 4.70228 | − | 6.47214i | −18.6888 | + | 57.5183i | −16.9522 | − | 14.5816i | ||
29.1 | −1.90211 | − | 0.618034i | −4.41051 | + | 6.07054i | 3.23607 | + | 2.35114i | −3.40245 | − | 10.6500i | 12.1411 | − | 8.82101i | − | 17.5556i | −4.70228 | − | 6.47214i | −9.05545 | − | 27.8698i | −0.110239 | + | 22.3604i | |
29.2 | −1.90211 | − | 0.618034i | −0.184196 | + | 0.253524i | 3.23607 | + | 2.35114i | −9.32973 | + | 6.16085i | 0.507047 | − | 0.368391i | 8.77601i | −4.70228 | − | 6.47214i | 8.31311 | + | 25.5851i | 21.5538 | − | 5.95254i | ||
29.3 | −1.90211 | − | 0.618034i | 2.86980 | − | 3.94994i | 3.23607 | + | 2.35114i | 7.54709 | + | 8.24872i | −7.89989 | + | 5.73960i | − | 32.3828i | −4.70228 | − | 6.47214i | 0.977169 | + | 3.00742i | −9.25744 | − | 20.3544i | |
29.4 | −1.90211 | − | 0.618034i | 5.72432 | − | 7.87886i | 3.23607 | + | 2.35114i | −3.73936 | − | 10.5365i | −15.7577 | + | 11.4486i | 26.8849i | −4.70228 | − | 6.47214i | −20.9650 | − | 64.5237i | 0.600782 | + | 22.3526i | ||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 50.4.e.a | ✓ | 32 |
5.b | even | 2 | 1 | 250.4.e.b | 32 | ||
5.c | odd | 4 | 1 | 250.4.d.c | 32 | ||
5.c | odd | 4 | 1 | 250.4.d.d | 32 | ||
25.d | even | 5 | 1 | 250.4.e.b | 32 | ||
25.e | even | 10 | 1 | inner | 50.4.e.a | ✓ | 32 |
25.f | odd | 20 | 1 | 250.4.d.c | 32 | ||
25.f | odd | 20 | 1 | 250.4.d.d | 32 | ||
25.f | odd | 20 | 1 | 1250.4.a.m | 16 | ||
25.f | odd | 20 | 1 | 1250.4.a.n | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
50.4.e.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
50.4.e.a | ✓ | 32 | 25.e | even | 10 | 1 | inner |
250.4.d.c | 32 | 5.c | odd | 4 | 1 | ||
250.4.d.c | 32 | 25.f | odd | 20 | 1 | ||
250.4.d.d | 32 | 5.c | odd | 4 | 1 | ||
250.4.d.d | 32 | 25.f | odd | 20 | 1 | ||
250.4.e.b | 32 | 5.b | even | 2 | 1 | ||
250.4.e.b | 32 | 25.d | even | 5 | 1 | ||
1250.4.a.m | 16 | 25.f | odd | 20 | 1 | ||
1250.4.a.n | 16 | 25.f | odd | 20 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(50, [\chi])\).