Properties

Label 50.4.a.d
Level $50$
Weight $4$
Character orbit 50.a
Self dual yes
Analytic conductor $2.950$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(2.95009550029\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + 2q^{3} + 4q^{4} + 4q^{6} + 26q^{7} + 8q^{8} - 23q^{9} + O(q^{10}) \) \( q + 2q^{2} + 2q^{3} + 4q^{4} + 4q^{6} + 26q^{7} + 8q^{8} - 23q^{9} - 28q^{11} + 8q^{12} + 12q^{13} + 52q^{14} + 16q^{16} - 64q^{17} - 46q^{18} - 60q^{19} + 52q^{21} - 56q^{22} - 58q^{23} + 16q^{24} + 24q^{26} - 100q^{27} + 104q^{28} + 90q^{29} - 128q^{31} + 32q^{32} - 56q^{33} - 128q^{34} - 92q^{36} + 236q^{37} - 120q^{38} + 24q^{39} + 242q^{41} + 104q^{42} + 362q^{43} - 112q^{44} - 116q^{46} + 226q^{47} + 32q^{48} + 333q^{49} - 128q^{51} + 48q^{52} - 108q^{53} - 200q^{54} + 208q^{56} - 120q^{57} + 180q^{58} - 20q^{59} + 542q^{61} - 256q^{62} - 598q^{63} + 64q^{64} - 112q^{66} - 434q^{67} - 256q^{68} - 116q^{69} - 1128q^{71} - 184q^{72} + 632q^{73} + 472q^{74} - 240q^{76} - 728q^{77} + 48q^{78} - 720q^{79} + 421q^{81} + 484q^{82} - 478q^{83} + 208q^{84} + 724q^{86} + 180q^{87} - 224q^{88} - 490q^{89} + 312q^{91} - 232q^{92} - 256q^{93} + 452q^{94} + 64q^{96} + 1456q^{97} + 666q^{98} + 644q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 2.00000 4.00000 0 4.00000 26.0000 8.00000 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.4.a.d 1
3.b odd 2 1 450.4.a.j 1
4.b odd 2 1 400.4.a.h 1
5.b even 2 1 50.4.a.b 1
5.c odd 4 2 10.4.b.a 2
7.b odd 2 1 2450.4.a.bb 1
8.b even 2 1 1600.4.a.u 1
8.d odd 2 1 1600.4.a.bg 1
15.d odd 2 1 450.4.a.k 1
15.e even 4 2 90.4.c.b 2
20.d odd 2 1 400.4.a.n 1
20.e even 4 2 80.4.c.a 2
35.c odd 2 1 2450.4.a.o 1
35.f even 4 2 490.4.c.b 2
40.e odd 2 1 1600.4.a.t 1
40.f even 2 1 1600.4.a.bh 1
40.i odd 4 2 320.4.c.d 2
40.k even 4 2 320.4.c.c 2
60.l odd 4 2 720.4.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 5.c odd 4 2
50.4.a.b 1 5.b even 2 1
50.4.a.d 1 1.a even 1 1 trivial
80.4.c.a 2 20.e even 4 2
90.4.c.b 2 15.e even 4 2
320.4.c.c 2 40.k even 4 2
320.4.c.d 2 40.i odd 4 2
400.4.a.h 1 4.b odd 2 1
400.4.a.n 1 20.d odd 2 1
450.4.a.j 1 3.b odd 2 1
450.4.a.k 1 15.d odd 2 1
490.4.c.b 2 35.f even 4 2
720.4.f.f 2 60.l odd 4 2
1600.4.a.t 1 40.e odd 2 1
1600.4.a.u 1 8.b even 2 1
1600.4.a.bg 1 8.d odd 2 1
1600.4.a.bh 1 40.f even 2 1
2450.4.a.o 1 35.c odd 2 1
2450.4.a.bb 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(50))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( -2 + T \)
$5$ \( T \)
$7$ \( -26 + T \)
$11$ \( 28 + T \)
$13$ \( -12 + T \)
$17$ \( 64 + T \)
$19$ \( 60 + T \)
$23$ \( 58 + T \)
$29$ \( -90 + T \)
$31$ \( 128 + T \)
$37$ \( -236 + T \)
$41$ \( -242 + T \)
$43$ \( -362 + T \)
$47$ \( -226 + T \)
$53$ \( 108 + T \)
$59$ \( 20 + T \)
$61$ \( -542 + T \)
$67$ \( 434 + T \)
$71$ \( 1128 + T \)
$73$ \( -632 + T \)
$79$ \( 720 + T \)
$83$ \( 478 + T \)
$89$ \( 490 + T \)
$97$ \( -1456 + T \)
show more
show less