Newspace parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.f (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.36240132180\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | 0.642040 | + | 1.26007i | −0.828443 | − | 5.23058i | −1.17557 | + | 1.61803i | 4.96105 | + | 0.622901i | 6.05902 | − | 4.40214i | 4.28629 | − | 4.28629i | −2.79360 | − | 0.442463i | −18.1132 | + | 5.88532i | 2.40029 | + | 6.65121i |
3.2 | 0.642040 | + | 1.26007i | 0.304004 | + | 1.91941i | −1.17557 | + | 1.61803i | −3.29532 | + | 3.76044i | −2.22341 | + | 1.61540i | 6.96775 | − | 6.96775i | −2.79360 | − | 0.442463i | 4.96781 | − | 1.61414i | −6.85415 | − | 1.73799i |
3.3 | 0.642040 | + | 1.26007i | 0.382399 | + | 2.41437i | −1.17557 | + | 1.61803i | 3.59048 | − | 3.47972i | −2.79677 | + | 2.03197i | −7.03135 | + | 7.03135i | −2.79360 | − | 0.442463i | 2.87654 | − | 0.934645i | 6.68993 | + | 2.29016i |
13.1 | 1.39680 | − | 0.221232i | −2.14176 | + | 4.20343i | 1.90211 | − | 0.618034i | −1.43099 | + | 4.79085i | −2.06168 | + | 6.34519i | 8.41873 | − | 8.41873i | 2.52015 | − | 1.28408i | −7.79165 | − | 10.7243i | −0.938916 | + | 7.00845i |
13.2 | 1.39680 | − | 0.221232i | −0.299213 | + | 0.587238i | 1.90211 | − | 0.618034i | 3.77205 | − | 3.28201i | −0.288025 | + | 0.886451i | −5.08008 | + | 5.08008i | 2.52015 | − | 1.28408i | 5.03475 | + | 6.92973i | 4.54273 | − | 5.41882i |
13.3 | 1.39680 | − | 0.221232i | 1.54417 | − | 3.03060i | 1.90211 | − | 0.618034i | −4.51960 | + | 2.13851i | 1.48643 | − | 4.57476i | −2.71827 | + | 2.71827i | 2.52015 | − | 1.28408i | −1.51000 | − | 2.07833i | −5.83988 | + | 3.98695i |
17.1 | 0.642040 | − | 1.26007i | −0.828443 | + | 5.23058i | −1.17557 | − | 1.61803i | 4.96105 | − | 0.622901i | 6.05902 | + | 4.40214i | 4.28629 | + | 4.28629i | −2.79360 | + | 0.442463i | −18.1132 | − | 5.88532i | 2.40029 | − | 6.65121i |
17.2 | 0.642040 | − | 1.26007i | 0.304004 | − | 1.91941i | −1.17557 | − | 1.61803i | −3.29532 | − | 3.76044i | −2.22341 | − | 1.61540i | 6.96775 | + | 6.96775i | −2.79360 | + | 0.442463i | 4.96781 | + | 1.61414i | −6.85415 | + | 1.73799i |
17.3 | 0.642040 | − | 1.26007i | 0.382399 | − | 2.41437i | −1.17557 | − | 1.61803i | 3.59048 | + | 3.47972i | −2.79677 | − | 2.03197i | −7.03135 | − | 7.03135i | −2.79360 | + | 0.442463i | 2.87654 | + | 0.934645i | 6.68993 | − | 2.29016i |
23.1 | 0.221232 | − | 1.39680i | −5.16469 | + | 2.63154i | −1.90211 | − | 0.618034i | −4.87769 | − | 1.09913i | 2.53315 | + | 7.79623i | −2.21400 | + | 2.21400i | −1.28408 | + | 2.52015i | 14.4589 | − | 19.9010i | −2.61437 | + | 6.57001i |
23.2 | 0.221232 | − | 1.39680i | 0.687579 | − | 0.350339i | −1.90211 | − | 0.618034i | 2.80598 | − | 4.13842i | −0.337240 | − | 1.03792i | 2.38638 | − | 2.38638i | −1.28408 | + | 2.52015i | −4.94004 | + | 6.79938i | −5.15978 | − | 4.83494i |
23.3 | 0.221232 | − | 1.39680i | 4.75588 | − | 2.42324i | −1.90211 | − | 0.618034i | −2.45795 | + | 4.35413i | −2.33264 | − | 7.17912i | −6.88294 | + | 6.88294i | −1.28408 | + | 2.52015i | 11.4562 | − | 15.7681i | 5.53808 | + | 4.39655i |
27.1 | 1.39680 | + | 0.221232i | −2.14176 | − | 4.20343i | 1.90211 | + | 0.618034i | −1.43099 | − | 4.79085i | −2.06168 | − | 6.34519i | 8.41873 | + | 8.41873i | 2.52015 | + | 1.28408i | −7.79165 | + | 10.7243i | −0.938916 | − | 7.00845i |
27.2 | 1.39680 | + | 0.221232i | −0.299213 | − | 0.587238i | 1.90211 | + | 0.618034i | 3.77205 | + | 3.28201i | −0.288025 | − | 0.886451i | −5.08008 | − | 5.08008i | 2.52015 | + | 1.28408i | 5.03475 | − | 6.92973i | 4.54273 | + | 5.41882i |
27.3 | 1.39680 | + | 0.221232i | 1.54417 | + | 3.03060i | 1.90211 | + | 0.618034i | −4.51960 | − | 2.13851i | 1.48643 | + | 4.57476i | −2.71827 | − | 2.71827i | 2.52015 | + | 1.28408i | −1.51000 | + | 2.07833i | −5.83988 | − | 3.98695i |
33.1 | −1.26007 | − | 0.642040i | −3.62730 | − | 0.574508i | 1.17557 | + | 1.61803i | 0.654751 | + | 4.95694i | 4.20181 | + | 3.05279i | −8.92599 | + | 8.92599i | −0.442463 | − | 2.79360i | 4.26773 | + | 1.38667i | 2.35752 | − | 6.66649i |
33.2 | −1.26007 | − | 0.642040i | 0.185739 | + | 0.0294182i | 1.17557 | + | 1.61803i | 4.66951 | − | 1.78765i | −0.215157 | − | 0.156321i | 7.34278 | − | 7.34278i | −0.442463 | − | 2.79360i | −8.52588 | − | 2.77022i | −7.03167 | − | 0.745442i |
33.3 | −1.26007 | − | 0.642040i | 5.20163 | + | 0.823858i | 1.17557 | + | 1.61803i | −3.87227 | + | 3.16315i | −6.02549 | − | 4.37778i | 2.45070 | − | 2.45070i | −0.442463 | − | 2.79360i | 17.8187 | + | 5.78966i | 6.91021 | − | 1.49965i |
37.1 | 0.221232 | + | 1.39680i | −5.16469 | − | 2.63154i | −1.90211 | + | 0.618034i | −4.87769 | + | 1.09913i | 2.53315 | − | 7.79623i | −2.21400 | − | 2.21400i | −1.28408 | − | 2.52015i | 14.4589 | + | 19.9010i | −2.61437 | − | 6.57001i |
37.2 | 0.221232 | + | 1.39680i | 0.687579 | + | 0.350339i | −1.90211 | + | 0.618034i | 2.80598 | + | 4.13842i | −0.337240 | + | 1.03792i | 2.38638 | + | 2.38638i | −1.28408 | − | 2.52015i | −4.94004 | − | 6.79938i | −5.15978 | + | 4.83494i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.f | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 50.3.f.b | ✓ | 24 |
4.b | odd | 2 | 1 | 400.3.bg.b | 24 | ||
5.b | even | 2 | 1 | 250.3.f.e | 24 | ||
5.c | odd | 4 | 1 | 250.3.f.d | 24 | ||
5.c | odd | 4 | 1 | 250.3.f.f | 24 | ||
25.d | even | 5 | 1 | 250.3.f.f | 24 | ||
25.e | even | 10 | 1 | 250.3.f.d | 24 | ||
25.f | odd | 20 | 1 | inner | 50.3.f.b | ✓ | 24 |
25.f | odd | 20 | 1 | 250.3.f.e | 24 | ||
100.l | even | 20 | 1 | 400.3.bg.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
50.3.f.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
50.3.f.b | ✓ | 24 | 25.f | odd | 20 | 1 | inner |
250.3.f.d | 24 | 5.c | odd | 4 | 1 | ||
250.3.f.d | 24 | 25.e | even | 10 | 1 | ||
250.3.f.e | 24 | 5.b | even | 2 | 1 | ||
250.3.f.e | 24 | 25.f | odd | 20 | 1 | ||
250.3.f.f | 24 | 5.c | odd | 4 | 1 | ||
250.3.f.f | 24 | 25.d | even | 5 | 1 | ||
400.3.bg.b | 24 | 4.b | odd | 2 | 1 | ||
400.3.bg.b | 24 | 100.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} - 2 T_{3}^{23} - 18 T_{3}^{22} - 96 T_{3}^{21} + 104 T_{3}^{20} + 2798 T_{3}^{19} + 23674 T_{3}^{18} - 106064 T_{3}^{17} + 7797 T_{3}^{16} - 1616938 T_{3}^{15} + 2117552 T_{3}^{14} + 15114476 T_{3}^{13} + \cdots + 533794816 \)
acting on \(S_{3}^{\mathrm{new}}(50, [\chi])\).