Properties

Label 50.3.f.a
Level $50$
Weight $3$
Character orbit 50.f
Analytic conductor $1.362$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,3,Mod(3,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([7]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.3");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 50.f (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36240132180\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 30x^{14} + 351x^{12} + 2130x^{10} + 7341x^{8} + 14480x^{6} + 15196x^{4} + 6560x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{9} + \beta_1) q^{2} + (\beta_{15} - \beta_{13} - \beta_{10} + \cdots - 1) q^{3}+ \cdots + (\beta_{15} + \beta_{14} - 3 \beta_{9} + \cdots - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{9} + \beta_1) q^{2} + (\beta_{15} - \beta_{13} - \beta_{10} + \cdots - 1) q^{3}+ \cdots + ( - 9 \beta_{15} + 9 \beta_{14} + \cdots - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 2 q^{3} + 4 q^{6} - 2 q^{7} + 8 q^{8} - 40 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{2} + 2 q^{3} + 4 q^{6} - 2 q^{7} + 8 q^{8} - 40 q^{9} + 10 q^{10} + 32 q^{11} + 4 q^{12} - 8 q^{13} - 30 q^{14} + 16 q^{16} - 62 q^{17} - 16 q^{18} + 30 q^{19} - 20 q^{20} - 68 q^{21} - 48 q^{22} - 18 q^{23} + 70 q^{25} - 56 q^{26} - 40 q^{27} + 44 q^{28} + 100 q^{29} + 120 q^{30} + 132 q^{31} - 64 q^{32} - 36 q^{33} + 100 q^{34} + 150 q^{35} + 48 q^{36} + 138 q^{37} + 20 q^{38} - 320 q^{39} - 88 q^{41} - 8 q^{42} - 78 q^{43} + 40 q^{44} - 20 q^{45} - 26 q^{46} - 22 q^{47} - 8 q^{48} - 20 q^{50} - 168 q^{51} - 16 q^{52} + 182 q^{53} + 80 q^{54} + 280 q^{55} + 48 q^{56} + 280 q^{57} - 120 q^{58} - 350 q^{59} - 140 q^{60} + 372 q^{61} - 158 q^{62} + 22 q^{63} - 910 q^{65} - 202 q^{66} - 112 q^{67} - 196 q^{68} - 30 q^{69} - 20 q^{70} + 122 q^{71} - 132 q^{72} - 248 q^{73} - 80 q^{75} + 40 q^{76} + 16 q^{77} + 438 q^{78} + 760 q^{79} + 80 q^{80} - 144 q^{81} + 352 q^{82} + 132 q^{83} - 20 q^{84} - 30 q^{85} + 264 q^{86} + 770 q^{87} + 116 q^{88} + 550 q^{89} - 140 q^{90} - 798 q^{91} + 384 q^{92} + 54 q^{93} + 190 q^{94} + 40 q^{95} - 16 q^{96} - 292 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 30x^{14} + 351x^{12} + 2130x^{10} + 7341x^{8} + 14480x^{6} + 15196x^{4} + 6560x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 61 \nu^{15} + 364 \nu^{14} - 2016 \nu^{13} + 10504 \nu^{12} - 25551 \nu^{11} + 114532 \nu^{10} + \cdots + 6528 ) / 5728 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 61 \nu^{15} + 364 \nu^{14} + 2016 \nu^{13} + 10504 \nu^{12} + 25551 \nu^{11} + 114532 \nu^{10} + \cdots + 6528 ) / 5728 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 297 \nu^{15} + 550 \nu^{14} + 8366 \nu^{13} + 14644 \nu^{12} + 88651 \nu^{11} + 143378 \nu^{10} + \cdots - 3040 ) / 5728 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 297 \nu^{15} + 550 \nu^{14} - 8366 \nu^{13} + 14644 \nu^{12} - 88651 \nu^{11} + 143378 \nu^{10} + \cdots - 3040 ) / 5728 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 219 \nu^{15} - 1228 \nu^{14} - 5348 \nu^{13} - 33084 \nu^{12} - 45697 \nu^{11} - 329596 \nu^{10} + \cdots - 21488 ) / 5728 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 219 \nu^{15} - 1228 \nu^{14} + 5348 \nu^{13} - 33084 \nu^{12} + 45697 \nu^{11} - 329596 \nu^{10} + \cdots - 21488 ) / 5728 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 347 \nu^{15} - 1584 \nu^{14} + 9502 \nu^{13} - 42948 \nu^{12} + 97129 \nu^{11} - 432232 \nu^{10} + \cdots - 10720 ) / 5728 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 347 \nu^{15} + 1584 \nu^{14} + 9502 \nu^{13} + 42948 \nu^{12} + 97129 \nu^{11} + 432232 \nu^{10} + \cdots + 10720 ) / 5728 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 1259 \nu^{15} - 1584 \nu^{14} - 34132 \nu^{13} - 42948 \nu^{12} - 343473 \nu^{11} - 432232 \nu^{10} + \cdots - 13584 ) / 5728 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 583 \nu^{15} - 1480 \nu^{14} - 15494 \nu^{13} - 39998 \nu^{12} - 151637 \nu^{11} - 400736 \nu^{10} + \cdots + 760 ) / 2864 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 165 \nu^{15} - 1998 \nu^{14} - 4429 \nu^{13} - 54946 \nu^{12} - 44159 \nu^{11} - 563834 \nu^{10} + \cdots - 11504 ) / 2864 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 622 \nu^{15} - 1819 \nu^{14} + 17003 \nu^{13} - 49218 \nu^{12} + 173114 \nu^{11} - 493845 \nu^{10} + \cdots - 8640 ) / 2864 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 33 \nu^{15} - 4546 \nu^{14} + 492 \nu^{13} - 124536 \nu^{12} - 333 \nu^{11} - 1271046 \nu^{10} + \cdots - 19968 ) / 5728 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 1820 \nu^{15} + 1365 \nu^{14} - 49298 \nu^{13} + 36884 \nu^{12} - 495332 \nu^{11} + 369351 \nu^{10} + \cdots + 7296 ) / 2864 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 1551 \nu^{15} - 5454 \nu^{14} + 42456 \nu^{13} - 149204 \nu^{12} + 432565 \nu^{11} - 1520034 \nu^{10} + \cdots - 25520 ) / 5728 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( - \beta_{15} + \beta_{14} - 3 \beta_{13} + 2 \beta_{12} + 4 \beta_{11} - \beta_{10} - 3 \beta_{9} + \cdots - 3 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 2 \beta_{15} - 2 \beta_{14} + 4 \beta_{13} - 4 \beta_{12} + 2 \beta_{11} - 2 \beta_{10} + 2 \beta_{9} + \cdots - 17 ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2 \beta_{15} - 2 \beta_{14} + 21 \beta_{13} - 14 \beta_{12} - 23 \beta_{11} + 12 \beta_{10} + 6 \beta_{9} + \cdots + 16 ) / 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8 \beta_{15} + 8 \beta_{14} - 11 \beta_{13} + 13 \beta_{12} - 3 \beta_{11} + 5 \beta_{10} - 8 \beta_{9} + \cdots + 21 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 9 \beta_{15} - 9 \beta_{14} - 208 \beta_{13} + 137 \beta_{12} + 199 \beta_{11} - 146 \beta_{10} + \cdots - 133 ) / 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 542 \beta_{15} - 542 \beta_{14} + 669 \beta_{13} - 819 \beta_{12} + 127 \beta_{11} - 277 \beta_{10} + \cdots - 912 ) / 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 233 \beta_{15} + 233 \beta_{14} + 2321 \beta_{13} - 1509 \beta_{12} - 2088 \beta_{11} + 1742 \beta_{10} + \cdots + 1351 ) / 5 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 1320 \beta_{15} + 1320 \beta_{14} - 1568 \beta_{13} + 1948 \beta_{12} - 248 \beta_{11} + 628 \beta_{10} + \cdots + 1901 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 3264 \beta_{15} - 3264 \beta_{14} - 26693 \beta_{13} + 17232 \beta_{12} + 23429 \beta_{11} + \cdots - 14848 ) / 5 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 77742 \beta_{15} - 77742 \beta_{14} + 90989 \beta_{13} - 113869 \beta_{12} + 13247 \beta_{11} + \cdots - 106197 ) / 5 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 40423 \beta_{15} + 40423 \beta_{14} + 309006 \beta_{13} - 198849 \beta_{12} - 268583 \beta_{11} + \cdots + 168331 ) / 5 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 181168 \beta_{15} + 181168 \beta_{14} - 210773 \beta_{13} + 264731 \beta_{12} - 29605 \beta_{11} + \cdots + 242974 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 480759 \beta_{15} - 480759 \beta_{14} - 3581023 \beta_{13} + 2301347 \beta_{12} + 3100264 \beta_{11} + \cdots - 1932503 ) / 5 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 10515952 \beta_{15} - 10515952 \beta_{14} + 12204034 \beta_{13} - 15354984 \beta_{12} + \cdots - 14009687 ) / 5 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 5630388 \beta_{15} + 5630388 \beta_{14} + 41499681 \beta_{13} - 26655034 \beta_{12} - 35869293 \beta_{11} + \cdots + 22301706 ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
2.26402i
1.64599i
1.78563i
3.40366i
2.26402i
1.64599i
0.0495271i
1.56851i
1.78563i
3.40366i
1.84816i
1.23012i
0.0495271i
1.56851i
1.84816i
1.23012i
−0.642040 1.26007i −0.711697 4.49348i −1.17557 + 1.61803i −4.53886 + 2.09733i −5.20517 + 3.78178i 3.58690 3.58690i 2.79360 + 0.442463i −11.1253 + 3.61484i 5.55691 + 4.37272i
3.2 −0.642040 1.26007i 0.569657 + 3.59668i −1.17557 + 1.61803i 2.10649 + 4.53461i 4.16633 3.02702i 0.635779 0.635779i 2.79360 + 0.442463i −4.05206 + 1.31659i 4.36149 5.56574i
13.1 −1.39680 + 0.221232i −1.14941 + 2.25584i 1.90211 0.618034i −4.68874 + 1.73657i 1.10643 3.40526i −6.58346 + 6.58346i −2.52015 + 1.28408i 1.52238 + 2.09537i 6.16506 3.46295i
13.2 −1.39680 + 0.221232i 0.252608 0.495771i 1.90211 0.618034i 3.68015 + 3.38474i −0.243163 + 0.748380i 7.20385 7.20385i −2.52015 + 1.28408i 5.10809 + 7.03068i −5.88926 3.91365i
17.1 −0.642040 + 1.26007i −0.711697 + 4.49348i −1.17557 1.61803i −4.53886 2.09733i −5.20517 3.78178i 3.58690 + 3.58690i 2.79360 0.442463i −11.1253 3.61484i 5.55691 4.37272i
17.2 −0.642040 + 1.26007i 0.569657 3.59668i −1.17557 1.61803i 2.10649 4.53461i 4.16633 + 3.02702i 0.635779 + 0.635779i 2.79360 0.442463i −4.05206 1.31659i 4.36149 + 5.56574i
23.1 −0.221232 + 1.39680i −2.40328 + 1.22453i −1.90211 0.618034i −1.59895 + 4.73744i −1.17875 3.62781i −3.03568 + 3.03568i 1.28408 2.52015i −1.01379 + 1.39536i −6.26353 3.28149i
23.2 −0.221232 + 1.39680i 2.68205 1.36657i −1.90211 0.618034i 4.84361 1.24072i 1.31548 + 4.04862i −3.67488 + 3.67488i 1.28408 2.52015i 0.0358006 0.0492753i 0.661483 + 7.04006i
27.1 −1.39680 0.221232i −1.14941 2.25584i 1.90211 + 0.618034i −4.68874 1.73657i 1.10643 + 3.40526i −6.58346 6.58346i −2.52015 1.28408i 1.52238 2.09537i 6.16506 + 3.46295i
27.2 −1.39680 0.221232i 0.252608 + 0.495771i 1.90211 + 0.618034i 3.68015 3.38474i −0.243163 0.748380i 7.20385 + 7.20385i −2.52015 1.28408i 5.10809 7.03068i −5.88926 + 3.91365i
33.1 1.26007 + 0.642040i −0.742607 0.117617i 1.17557 + 1.61803i 4.02861 + 2.96147i −0.860225 0.624990i 2.71368 2.71368i 0.442463 + 2.79360i −8.02188 2.60647i 3.17497 + 6.31819i
33.2 1.26007 + 0.642040i 2.50268 + 0.396386i 1.17557 + 1.61803i −3.83232 3.21144i 2.89907 + 2.10629i −1.84619 + 1.84619i 0.442463 + 2.79360i −2.45322 0.797099i −2.76713 6.50715i
37.1 −0.221232 1.39680i −2.40328 1.22453i −1.90211 + 0.618034i −1.59895 4.73744i −1.17875 + 3.62781i −3.03568 3.03568i 1.28408 + 2.52015i −1.01379 1.39536i −6.26353 + 3.28149i
37.2 −0.221232 1.39680i 2.68205 + 1.36657i −1.90211 + 0.618034i 4.84361 + 1.24072i 1.31548 4.04862i −3.67488 3.67488i 1.28408 + 2.52015i 0.0358006 + 0.0492753i 0.661483 7.04006i
47.1 1.26007 0.642040i −0.742607 + 0.117617i 1.17557 1.61803i 4.02861 2.96147i −0.860225 + 0.624990i 2.71368 + 2.71368i 0.442463 2.79360i −8.02188 + 2.60647i 3.17497 6.31819i
47.2 1.26007 0.642040i 2.50268 0.396386i 1.17557 1.61803i −3.83232 + 3.21144i 2.89907 2.10629i −1.84619 1.84619i 0.442463 2.79360i −2.45322 + 0.797099i −2.76713 + 6.50715i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.f odd 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.3.f.a 16
4.b odd 2 1 400.3.bg.a 16
5.b even 2 1 250.3.f.b 16
5.c odd 4 1 250.3.f.a 16
5.c odd 4 1 250.3.f.c 16
25.d even 5 1 250.3.f.a 16
25.e even 10 1 250.3.f.c 16
25.f odd 20 1 inner 50.3.f.a 16
25.f odd 20 1 250.3.f.b 16
100.l even 20 1 400.3.bg.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.3.f.a 16 1.a even 1 1 trivial
50.3.f.a 16 25.f odd 20 1 inner
250.3.f.a 16 5.c odd 4 1
250.3.f.a 16 25.d even 5 1
250.3.f.b 16 5.b even 2 1
250.3.f.b 16 25.f odd 20 1
250.3.f.c 16 5.c odd 4 1
250.3.f.c 16 25.e even 10 1
400.3.bg.a 16 4.b odd 2 1
400.3.bg.a 16 100.l even 20 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - 2 T_{3}^{15} + 22 T_{3}^{14} - 76 T_{3}^{13} + 76 T_{3}^{12} - 322 T_{3}^{11} + \cdots + 130321 \) acting on \(S_{3}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} - 2 T^{15} + \cdots + 130321 \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 152587890625 \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 9353984656 \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 21080623380496 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 79\!\cdots\!21 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 15\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 58\!\cdots\!81 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 52\!\cdots\!25 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 26\!\cdots\!21 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 11\!\cdots\!81 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 47\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 93\!\cdots\!21 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 17\!\cdots\!61 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 38\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 17\!\cdots\!01 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 73\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 15\!\cdots\!01 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 21\!\cdots\!61 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 27\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 84\!\cdots\!01 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 71\!\cdots\!81 \) Copy content Toggle raw display
show more
show less