Properties

Label 50.3.c.c
Level 50
Weight 3
Character orbit 50.c
Analytic conductor 1.362
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.36240132180\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + i ) q^{2} + ( 2 - 2 i ) q^{3} + 2 i q^{4} + 4 q^{6} + ( -2 - 2 i ) q^{7} + ( -2 + 2 i ) q^{8} + i q^{9} +O(q^{10})\) \( q + ( 1 + i ) q^{2} + ( 2 - 2 i ) q^{3} + 2 i q^{4} + 4 q^{6} + ( -2 - 2 i ) q^{7} + ( -2 + 2 i ) q^{8} + i q^{9} -8 q^{11} + ( 4 + 4 i ) q^{12} + ( -3 + 3 i ) q^{13} -4 i q^{14} -4 q^{16} + ( -7 - 7 i ) q^{17} + ( -1 + i ) q^{18} -20 i q^{19} -8 q^{21} + ( -8 - 8 i ) q^{22} + ( 2 - 2 i ) q^{23} + 8 i q^{24} -6 q^{26} + ( 20 + 20 i ) q^{27} + ( 4 - 4 i ) q^{28} + 40 i q^{29} + 52 q^{31} + ( -4 - 4 i ) q^{32} + ( -16 + 16 i ) q^{33} -14 i q^{34} -2 q^{36} + ( 3 + 3 i ) q^{37} + ( 20 - 20 i ) q^{38} + 12 i q^{39} -8 q^{41} + ( -8 - 8 i ) q^{42} + ( 42 - 42 i ) q^{43} -16 i q^{44} + 4 q^{46} + ( 18 + 18 i ) q^{47} + ( -8 + 8 i ) q^{48} -41 i q^{49} -28 q^{51} + ( -6 - 6 i ) q^{52} + ( -53 + 53 i ) q^{53} + 40 i q^{54} + 8 q^{56} + ( -40 - 40 i ) q^{57} + ( -40 + 40 i ) q^{58} -20 i q^{59} -48 q^{61} + ( 52 + 52 i ) q^{62} + ( 2 - 2 i ) q^{63} -8 i q^{64} -32 q^{66} + ( -62 - 62 i ) q^{67} + ( 14 - 14 i ) q^{68} -8 i q^{69} -28 q^{71} + ( -2 - 2 i ) q^{72} + ( 47 - 47 i ) q^{73} + 6 i q^{74} + 40 q^{76} + ( 16 + 16 i ) q^{77} + ( -12 + 12 i ) q^{78} + 71 q^{81} + ( -8 - 8 i ) q^{82} + ( -18 + 18 i ) q^{83} -16 i q^{84} + 84 q^{86} + ( 80 + 80 i ) q^{87} + ( 16 - 16 i ) q^{88} + 80 i q^{89} + 12 q^{91} + ( 4 + 4 i ) q^{92} + ( 104 - 104 i ) q^{93} + 36 i q^{94} -16 q^{96} + ( 63 + 63 i ) q^{97} + ( 41 - 41 i ) q^{98} -8 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 4q^{3} + 8q^{6} - 4q^{7} - 4q^{8} + O(q^{10}) \) \( 2q + 2q^{2} + 4q^{3} + 8q^{6} - 4q^{7} - 4q^{8} - 16q^{11} + 8q^{12} - 6q^{13} - 8q^{16} - 14q^{17} - 2q^{18} - 16q^{21} - 16q^{22} + 4q^{23} - 12q^{26} + 40q^{27} + 8q^{28} + 104q^{31} - 8q^{32} - 32q^{33} - 4q^{36} + 6q^{37} + 40q^{38} - 16q^{41} - 16q^{42} + 84q^{43} + 8q^{46} + 36q^{47} - 16q^{48} - 56q^{51} - 12q^{52} - 106q^{53} + 16q^{56} - 80q^{57} - 80q^{58} - 96q^{61} + 104q^{62} + 4q^{63} - 64q^{66} - 124q^{67} + 28q^{68} - 56q^{71} - 4q^{72} + 94q^{73} + 80q^{76} + 32q^{77} - 24q^{78} + 142q^{81} - 16q^{82} - 36q^{83} + 168q^{86} + 160q^{87} + 32q^{88} + 24q^{91} + 8q^{92} + 208q^{93} - 32q^{96} + 126q^{97} + 82q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
1.00000i
1.00000i
1.00000 + 1.00000i 2.00000 2.00000i 2.00000i 0 4.00000 −2.00000 2.00000i −2.00000 + 2.00000i 1.00000i 0
43.1 1.00000 1.00000i 2.00000 + 2.00000i 2.00000i 0 4.00000 −2.00000 + 2.00000i −2.00000 2.00000i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.3.c.c 2
3.b odd 2 1 450.3.g.b 2
4.b odd 2 1 400.3.p.b 2
5.b even 2 1 10.3.c.a 2
5.c odd 4 1 10.3.c.a 2
5.c odd 4 1 inner 50.3.c.c 2
15.d odd 2 1 90.3.g.b 2
15.e even 4 1 90.3.g.b 2
15.e even 4 1 450.3.g.b 2
20.d odd 2 1 80.3.p.c 2
20.e even 4 1 80.3.p.c 2
20.e even 4 1 400.3.p.b 2
35.c odd 2 1 490.3.f.b 2
35.f even 4 1 490.3.f.b 2
40.e odd 2 1 320.3.p.a 2
40.f even 2 1 320.3.p.h 2
40.i odd 4 1 320.3.p.h 2
40.k even 4 1 320.3.p.a 2
60.h even 2 1 720.3.bh.c 2
60.l odd 4 1 720.3.bh.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.3.c.a 2 5.b even 2 1
10.3.c.a 2 5.c odd 4 1
50.3.c.c 2 1.a even 1 1 trivial
50.3.c.c 2 5.c odd 4 1 inner
80.3.p.c 2 20.d odd 2 1
80.3.p.c 2 20.e even 4 1
90.3.g.b 2 15.d odd 2 1
90.3.g.b 2 15.e even 4 1
320.3.p.a 2 40.e odd 2 1
320.3.p.a 2 40.k even 4 1
320.3.p.h 2 40.f even 2 1
320.3.p.h 2 40.i odd 4 1
400.3.p.b 2 4.b odd 2 1
400.3.p.b 2 20.e even 4 1
450.3.g.b 2 3.b odd 2 1
450.3.g.b 2 15.e even 4 1
490.3.f.b 2 35.c odd 2 1
490.3.f.b 2 35.f even 4 1
720.3.bh.c 2 60.h even 2 1
720.3.bh.c 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4 T_{3} + 8 \) acting on \(S_{3}^{\mathrm{new}}(50, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T + 2 T^{2} \)
$3$ \( 1 - 4 T + 8 T^{2} - 36 T^{3} + 81 T^{4} \)
$5$ 1
$7$ \( 1 + 4 T + 8 T^{2} + 196 T^{3} + 2401 T^{4} \)
$11$ \( ( 1 + 8 T + 121 T^{2} )^{2} \)
$13$ \( 1 + 6 T + 18 T^{2} + 1014 T^{3} + 28561 T^{4} \)
$17$ \( ( 1 - 16 T + 289 T^{2} )( 1 + 30 T + 289 T^{2} ) \)
$19$ \( 1 - 322 T^{2} + 130321 T^{4} \)
$23$ \( 1 - 4 T + 8 T^{2} - 2116 T^{3} + 279841 T^{4} \)
$29$ \( ( 1 - 42 T + 841 T^{2} )( 1 + 42 T + 841 T^{2} ) \)
$31$ \( ( 1 - 52 T + 961 T^{2} )^{2} \)
$37$ \( 1 - 6 T + 18 T^{2} - 8214 T^{3} + 1874161 T^{4} \)
$41$ \( ( 1 + 8 T + 1681 T^{2} )^{2} \)
$43$ \( 1 - 84 T + 3528 T^{2} - 155316 T^{3} + 3418801 T^{4} \)
$47$ \( 1 - 36 T + 648 T^{2} - 79524 T^{3} + 4879681 T^{4} \)
$53$ \( ( 1 + 53 T )^{2}( 1 + 2809 T^{2} ) \)
$59$ \( 1 - 6562 T^{2} + 12117361 T^{4} \)
$61$ \( ( 1 + 48 T + 3721 T^{2} )^{2} \)
$67$ \( 1 + 124 T + 7688 T^{2} + 556636 T^{3} + 20151121 T^{4} \)
$71$ \( ( 1 + 28 T + 5041 T^{2} )^{2} \)
$73$ \( 1 - 94 T + 4418 T^{2} - 500926 T^{3} + 28398241 T^{4} \)
$79$ \( ( 1 - 79 T )^{2}( 1 + 79 T )^{2} \)
$83$ \( 1 + 36 T + 648 T^{2} + 248004 T^{3} + 47458321 T^{4} \)
$89$ \( 1 - 9442 T^{2} + 62742241 T^{4} \)
$97$ \( 1 - 126 T + 7938 T^{2} - 1185534 T^{3} + 88529281 T^{4} \)
show more
show less