Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(22\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 6 | 36 |
Cusp forms | 18 | 6 | 12 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.3.c.a | $2$ | $1.362$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(6\) | \(0\) | \(-6\) | \(q+(-1-i)q^{2}+(3-3i)q^{3}+2iq^{4}+\cdots\) |
50.3.c.b | $2$ | $1.362$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(-6\) | \(0\) | \(6\) | \(q+(1+i)q^{2}+(-3+3i)q^{3}+2iq^{4}+\cdots\) |
50.3.c.c | $2$ | $1.362$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(4\) | \(0\) | \(-4\) | \(q+(1+i)q^{2}+(2-2i)q^{3}+2iq^{4}+4q^{6}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(50, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)