Properties

Label 50.28.b.e
Level $50$
Weight $28$
Character orbit 50.b
Analytic conductor $230.928$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,28,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(230.927787419\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 39103741x^{2} + 382275620496900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4096 \beta_1 q^{2} + (\beta_{2} + 835161 \beta_1) q^{3} - 67108864 q^{4} + (4096 \beta_{3} + 13683277824) q^{6} + ( - 97743 \beta_{2} - 14676710573 \beta_1) q^{7} + 274877906944 \beta_1 q^{8} + ( - 1670322 \beta_{3} + 1386671989203) q^{9}+ \cdots + (76\!\cdots\!05 \beta_{3} + 68\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 268435456 q^{4} + 54733111296 q^{6} + 5546687956812 q^{9} - 297168414794592 q^{11} - 961852904112128 q^{14} + 18\!\cdots\!84 q^{16} - 46\!\cdots\!00 q^{19} + 15\!\cdots\!48 q^{21} - 36\!\cdots\!44 q^{24}+ \cdots + 27\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 39103741x^{2} + 382275620496900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 19551871\nu ) / 9775935 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7\nu^{3} + 410589277\nu ) / 651729 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 840\nu^{2} + 16423571220 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 105\beta_1 ) / 420 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 16423571220 ) / 840 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -19551871\beta_{2} + 6158839155\beta_1 ) / 420 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
4422.25i
4421.25i
4421.25i
4422.25i
8192.00i 186813.i −6.71089e7 0 −1.53037e9 1.52169e11i 5.49756e11i 7.59070e12 0
49.2 8192.00i 3.52746e6i −6.71089e7 0 2.88969e10 2.10875e11i 5.49756e11i −4.81735e12 0
49.3 8192.00i 3.52746e6i −6.71089e7 0 2.88969e10 2.10875e11i 5.49756e11i −4.81735e12 0
49.4 8192.00i 186813.i −6.71089e7 0 −1.53037e9 1.52169e11i 5.49756e11i 7.59070e12 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.28.b.e 4
5.b even 2 1 inner 50.28.b.e 4
5.c odd 4 1 10.28.a.a 2
5.c odd 4 1 50.28.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.28.a.a 2 5.c odd 4 1
50.28.a.e 2 5.c odd 4 1
50.28.b.e 4 1.a even 1 1 trivial
50.28.b.e 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 12477850991568T_{3}^{2} + 434247165511318225069056 \) acting on \(S_{28}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 67108864)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 43\!\cdots\!56 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( (T^{2} + \cdots - 10\!\cdots\!96)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 17\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 67\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots + 28\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 96\!\cdots\!16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots + 25\!\cdots\!84)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 60\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 38\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 69\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots + 81\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 34\!\cdots\!64)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 68\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 52\!\cdots\!44)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 68\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 71\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 66\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 25\!\cdots\!56 \) Copy content Toggle raw display
show more
show less