Properties

Label 50.28.a.e
Level $50$
Weight $28$
Character orbit 50.a
Self dual yes
Analytic conductor $230.928$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,28,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(230.927787419\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 19551870 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 210\sqrt{78207481}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8192 q^{2} + ( - \beta + 1670322) q^{3} + 67108864 q^{4} + ( - 8192 \beta + 13683277824) q^{6} + ( - 97743 \beta + 29353421146) q^{7} + 549755813888 q^{8} + ( - 3340644 \beta - 1386671989203) q^{9}+ \cdots + (15\!\cdots\!10 \beta - 68\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16384 q^{2} + 3340644 q^{3} + 134217728 q^{4} + 27366555648 q^{6} + 58706842292 q^{7} + 1099511627776 q^{8} - 2773343978406 q^{9} - 148584207397296 q^{11} + 224186823868416 q^{12} - 700099119029596 q^{13}+ \cdots - 13\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4422.25
−4421.25
8192.00 −186813. 6.71089e7 0 −1.53037e9 −1.52169e11 5.49756e11 −7.59070e12 0
1.2 8192.00 3.52746e6 6.71089e7 0 2.88969e10 2.10875e11 5.49756e11 4.81735e12 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.28.a.e 2
5.b even 2 1 10.28.a.a 2
5.c odd 4 2 50.28.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.28.a.a 2 5.b even 2 1
50.28.a.e 2 1.a even 1 1 trivial
50.28.b.e 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3340644T_{3} - 658974328416 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8192)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 658974328416 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 32\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 16\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 41\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 82\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 96\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 48\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 25\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 24\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 19\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 26\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 34\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 26\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 52\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 82\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 71\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 15\!\cdots\!16 \) Copy content Toggle raw display
show more
show less