Properties

Label 50.28.a.c
Level $50$
Weight $28$
Character orbit 50.a
Self dual yes
Analytic conductor $230.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,28,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(230.927787419\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{711649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 177912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 120\sqrt{711649}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8192 q^{2} + ( - 31 \beta + 2351478) q^{3} + 67108864 q^{4} + (253952 \beta - 19263307776) q^{6} + ( - 523383 \beta + 28592520754) q^{7} - 549755813888 q^{8} + ( - 145791636 \beta + 7751934821097) q^{9}+ \cdots + ( - 69\!\cdots\!10 \beta - 39\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} + 4702956 q^{3} + 134217728 q^{4} - 38526615552 q^{6} + 57185041508 q^{7} - 1099511627776 q^{8} + 15503869642194 q^{9} + 169851430699104 q^{11} + 315610034601984 q^{12} + 10\!\cdots\!96 q^{13}+ \cdots - 79\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
422.296
−421.296
−8192.00 −786688. 6.71089e7 0 6.44455e9 −2.43901e10 −5.49756e11 −7.00672e12 0
1.2 −8192.00 5.48964e6 6.71089e7 0 −4.49712e10 8.15752e10 −5.49756e11 2.25106e13 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.28.a.c 2
5.b even 2 1 10.28.a.c 2
5.c odd 4 2 50.28.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.28.a.c 2 5.b even 2 1
50.28.a.c 2 1.a even 1 1 trivial
50.28.b.c 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4702956T_{3} - 4318634737116 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8192)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 4318634737116 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 19\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 90\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 48\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 92\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 42\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 43\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 82\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 53\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 28\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 39\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 58\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 20\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 20\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 27\!\cdots\!16 \) Copy content Toggle raw display
show more
show less