Properties

Label 50.26.b.h.49.1
Level $50$
Weight $26$
Character 50.49
Analytic conductor $197.998$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 5211818408605 x^{8} + \cdots + 28\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{38}\cdot 3^{10}\cdot 5^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.22241e6i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.26.b.h.49.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00i q^{2} -1.22241e6i q^{3} -1.67772e7 q^{4} -5.00697e9 q^{6} -6.80801e10i q^{7} +6.87195e10i q^{8} -6.46987e11 q^{9} -1.63529e13 q^{11} +2.05086e13i q^{12} +1.23277e14i q^{13} -2.78856e14 q^{14} +2.81475e14 q^{16} -1.24327e15i q^{17} +2.65006e15i q^{18} -1.08089e16 q^{19} -8.32215e16 q^{21} +6.69815e16i q^{22} +1.26942e17i q^{23} +8.40031e16 q^{24} +5.04942e17 q^{26} -2.44849e17i q^{27} +1.14219e18i q^{28} +1.19617e18 q^{29} +3.33827e18 q^{31} -1.15292e18i q^{32} +1.99899e19i q^{33} -5.09242e18 q^{34} +1.08546e19 q^{36} -5.02410e19i q^{37} +4.42734e19i q^{38} +1.50694e20 q^{39} -2.63431e20 q^{41} +3.40875e20i q^{42} +1.36754e20i q^{43} +2.74356e20 q^{44} +5.19955e20 q^{46} +7.03907e20i q^{47} -3.44077e20i q^{48} -3.29383e21 q^{49} -1.51978e21 q^{51} -2.06824e21i q^{52} -3.75972e21i q^{53} -1.00290e21 q^{54} +4.67843e21 q^{56} +1.32129e22i q^{57} -4.89952e21i q^{58} +6.89657e21 q^{59} +1.54607e22 q^{61} -1.36736e22i q^{62} +4.40470e22i q^{63} -4.72237e21 q^{64} +8.18786e22 q^{66} +8.66895e22i q^{67} +2.08585e22i q^{68} +1.55175e23 q^{69} +4.41872e22 q^{71} -4.44606e22i q^{72} -8.03151e22i q^{73} -2.05787e23 q^{74} +1.81344e23 q^{76} +1.11331e24i q^{77} -6.17244e23i q^{78} +5.07310e23 q^{79} -8.47490e23 q^{81} +1.07901e24i q^{82} +5.22032e23i q^{83} +1.39623e24 q^{84} +5.60143e23 q^{86} -1.46221e24i q^{87} -1.12376e24i q^{88} +1.15373e24 q^{89} +8.39270e24 q^{91} -2.12974e24i q^{92} -4.08072e24i q^{93} +2.88320e24 q^{94} -1.40934e24 q^{96} +4.89110e24i q^{97} +1.34915e25i q^{98} +1.05801e25 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 167772160 q^{4} + 5930967040 q^{6} - 1950750722780 q^{9} - 17674067967630 q^{11} - 403201115668480 q^{14} + 28\!\cdots\!60 q^{16} - 13\!\cdots\!50 q^{19} - 11\!\cdots\!80 q^{21} - 99\!\cdots\!40 q^{24}+ \cdots + 46\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4096.00i − 0.707107i
\(3\) − 1.22241e6i − 1.32801i −0.747730 0.664003i \(-0.768856\pi\)
0.747730 0.664003i \(-0.231144\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) 0 0
\(6\) −5.00697e9 −0.939041
\(7\) − 6.80801e10i − 1.85907i −0.368739 0.929533i \(-0.620211\pi\)
0.368739 0.929533i \(-0.379789\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) −6.46987e11 −0.763597
\(10\) 0 0
\(11\) −1.63529e13 −1.57104 −0.785519 0.618838i \(-0.787604\pi\)
−0.785519 + 0.618838i \(0.787604\pi\)
\(12\) 2.05086e13i 0.664003i
\(13\) 1.23277e14i 1.46754i 0.679399 + 0.733769i \(0.262241\pi\)
−0.679399 + 0.733769i \(0.737759\pi\)
\(14\) −2.78856e14 −1.31456
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) − 1.24327e15i − 0.517550i −0.965938 0.258775i \(-0.916681\pi\)
0.965938 0.258775i \(-0.0833189\pi\)
\(18\) 2.65006e15i 0.539945i
\(19\) −1.08089e16 −1.12037 −0.560187 0.828366i \(-0.689271\pi\)
−0.560187 + 0.828366i \(0.689271\pi\)
\(20\) 0 0
\(21\) −8.32215e16 −2.46885
\(22\) 6.69815e16i 1.11089i
\(23\) 1.26942e17i 1.20784i 0.797046 + 0.603918i \(0.206395\pi\)
−0.797046 + 0.603918i \(0.793605\pi\)
\(24\) 8.40031e16 0.469521
\(25\) 0 0
\(26\) 5.04942e17 1.03771
\(27\) − 2.44849e17i − 0.313944i
\(28\) 1.14219e18i 0.929533i
\(29\) 1.19617e18 0.627797 0.313898 0.949457i \(-0.398365\pi\)
0.313898 + 0.949457i \(0.398365\pi\)
\(30\) 0 0
\(31\) 3.33827e18 0.761203 0.380602 0.924739i \(-0.375717\pi\)
0.380602 + 0.924739i \(0.375717\pi\)
\(32\) − 1.15292e18i − 0.176777i
\(33\) 1.99899e19i 2.08635i
\(34\) −5.09242e18 −0.365963
\(35\) 0 0
\(36\) 1.08546e19 0.381799
\(37\) − 5.02410e19i − 1.25469i −0.778741 0.627346i \(-0.784141\pi\)
0.778741 0.627346i \(-0.215859\pi\)
\(38\) 4.42734e19i 0.792224i
\(39\) 1.50694e20 1.94890
\(40\) 0 0
\(41\) −2.63431e20 −1.82335 −0.911673 0.410917i \(-0.865209\pi\)
−0.911673 + 0.410917i \(0.865209\pi\)
\(42\) 3.40875e20i 1.74574i
\(43\) 1.36754e20i 0.521895i 0.965353 + 0.260947i \(0.0840349\pi\)
−0.965353 + 0.260947i \(0.915965\pi\)
\(44\) 2.74356e20 0.785519
\(45\) 0 0
\(46\) 5.19955e20 0.854069
\(47\) 7.03907e20i 0.883674i 0.897095 + 0.441837i \(0.145673\pi\)
−0.897095 + 0.441837i \(0.854327\pi\)
\(48\) − 3.44077e20i − 0.332001i
\(49\) −3.29383e21 −2.45613
\(50\) 0 0
\(51\) −1.51978e21 −0.687309
\(52\) − 2.06824e21i − 0.733769i
\(53\) − 3.75972e21i − 1.05125i −0.850716 0.525626i \(-0.823831\pi\)
0.850716 0.525626i \(-0.176169\pi\)
\(54\) −1.00290e21 −0.221992
\(55\) 0 0
\(56\) 4.67843e21 0.657279
\(57\) 1.32129e22i 1.48786i
\(58\) − 4.89952e21i − 0.443919i
\(59\) 6.89657e21 0.504642 0.252321 0.967644i \(-0.418806\pi\)
0.252321 + 0.967644i \(0.418806\pi\)
\(60\) 0 0
\(61\) 1.54607e22 0.745773 0.372886 0.927877i \(-0.378368\pi\)
0.372886 + 0.927877i \(0.378368\pi\)
\(62\) − 1.36736e22i − 0.538252i
\(63\) 4.40470e22i 1.41958i
\(64\) −4.72237e21 −0.125000
\(65\) 0 0
\(66\) 8.18786e22 1.47527
\(67\) 8.66895e22i 1.29429i 0.762367 + 0.647145i \(0.224037\pi\)
−0.762367 + 0.647145i \(0.775963\pi\)
\(68\) 2.08585e22i 0.258775i
\(69\) 1.55175e23 1.60401
\(70\) 0 0
\(71\) 4.41872e22 0.319571 0.159785 0.987152i \(-0.448920\pi\)
0.159785 + 0.987152i \(0.448920\pi\)
\(72\) − 4.44606e22i − 0.269972i
\(73\) − 8.03151e22i − 0.410451i −0.978715 0.205226i \(-0.934207\pi\)
0.978715 0.205226i \(-0.0657928\pi\)
\(74\) −2.05787e23 −0.887201
\(75\) 0 0
\(76\) 1.81344e23 0.560187
\(77\) 1.11331e24i 2.92066i
\(78\) − 6.17244e23i − 1.37808i
\(79\) 5.07310e23 0.965906 0.482953 0.875646i \(-0.339564\pi\)
0.482953 + 0.875646i \(0.339564\pi\)
\(80\) 0 0
\(81\) −8.47490e23 −1.18052
\(82\) 1.07901e24i 1.28930i
\(83\) 5.22032e23i 0.536070i 0.963409 + 0.268035i \(0.0863743\pi\)
−0.963409 + 0.268035i \(0.913626\pi\)
\(84\) 1.39623e24 1.23442
\(85\) 0 0
\(86\) 5.60143e23 0.369035
\(87\) − 1.46221e24i − 0.833717i
\(88\) − 1.12376e24i − 0.555446i
\(89\) 1.15373e24 0.495142 0.247571 0.968870i \(-0.420368\pi\)
0.247571 + 0.968870i \(0.420368\pi\)
\(90\) 0 0
\(91\) 8.39270e24 2.72825
\(92\) − 2.12974e24i − 0.603918i
\(93\) − 4.08072e24i − 1.01088i
\(94\) 2.88320e24 0.624852
\(95\) 0 0
\(96\) −1.40934e24 −0.234760
\(97\) 4.89110e24i 0.715748i 0.933770 + 0.357874i \(0.116498\pi\)
−0.933770 + 0.357874i \(0.883502\pi\)
\(98\) 1.34915e25i 1.73674i
\(99\) 1.05801e25 1.19964
\(100\) 0 0
\(101\) 1.39348e25 1.23051 0.615255 0.788328i \(-0.289053\pi\)
0.615255 + 0.788328i \(0.289053\pi\)
\(102\) 6.22500e24i 0.486001i
\(103\) 1.11068e25i 0.767579i 0.923421 + 0.383789i \(0.125381\pi\)
−0.923421 + 0.383789i \(0.874619\pi\)
\(104\) −8.47152e24 −0.518853
\(105\) 0 0
\(106\) −1.53998e25 −0.743348
\(107\) − 2.28767e25i − 0.981967i −0.871169 0.490983i \(-0.836638\pi\)
0.871169 0.490983i \(-0.163362\pi\)
\(108\) 4.10789e24i 0.156972i
\(109\) −3.92414e25 −1.33633 −0.668164 0.744014i \(-0.732919\pi\)
−0.668164 + 0.744014i \(0.732919\pi\)
\(110\) 0 0
\(111\) −6.14149e25 −1.66624
\(112\) − 1.91628e25i − 0.464766i
\(113\) 2.95166e25i 0.640599i 0.947316 + 0.320299i \(0.103784\pi\)
−0.947316 + 0.320299i \(0.896216\pi\)
\(114\) 5.41201e25 1.05208
\(115\) 0 0
\(116\) −2.00685e25 −0.313898
\(117\) − 7.97585e25i − 1.12061i
\(118\) − 2.82484e25i − 0.356835i
\(119\) −8.46417e25 −0.962160
\(120\) 0 0
\(121\) 1.59071e26 1.46816
\(122\) − 6.33271e25i − 0.527341i
\(123\) 3.22020e26i 2.42141i
\(124\) −5.60069e25 −0.380602
\(125\) 0 0
\(126\) 1.80416e26 1.00379
\(127\) − 3.71288e25i − 0.187139i −0.995613 0.0935696i \(-0.970172\pi\)
0.995613 0.0935696i \(-0.0298277\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) 1.67168e26 0.693079
\(130\) 0 0
\(131\) −2.02734e26 −0.693482 −0.346741 0.937961i \(-0.612712\pi\)
−0.346741 + 0.937961i \(0.612712\pi\)
\(132\) − 3.35375e26i − 1.04317i
\(133\) 7.35874e26i 2.08285i
\(134\) 3.55080e26 0.915201
\(135\) 0 0
\(136\) 8.54366e25 0.182982
\(137\) − 4.21478e26i − 0.823697i −0.911252 0.411848i \(-0.864883\pi\)
0.911252 0.411848i \(-0.135117\pi\)
\(138\) − 6.35596e26i − 1.13421i
\(139\) 2.61876e26 0.426983 0.213491 0.976945i \(-0.431516\pi\)
0.213491 + 0.976945i \(0.431516\pi\)
\(140\) 0 0
\(141\) 8.60460e26 1.17352
\(142\) − 1.80991e26i − 0.225971i
\(143\) − 2.01593e27i − 2.30556i
\(144\) −1.82111e26 −0.190899
\(145\) 0 0
\(146\) −3.28971e26 −0.290233
\(147\) 4.02640e27i 3.26175i
\(148\) 8.42905e26i 0.627346i
\(149\) −5.33091e26 −0.364732 −0.182366 0.983231i \(-0.558375\pi\)
−0.182366 + 0.983231i \(0.558375\pi\)
\(150\) 0 0
\(151\) −1.15195e26 −0.0667148 −0.0333574 0.999443i \(-0.510620\pi\)
−0.0333574 + 0.999443i \(0.510620\pi\)
\(152\) − 7.42784e26i − 0.396112i
\(153\) 8.04377e26i 0.395200i
\(154\) 4.56011e27 2.06522
\(155\) 0 0
\(156\) −2.52823e27 −0.974449
\(157\) − 7.11181e26i − 0.253066i −0.991962 0.126533i \(-0.959615\pi\)
0.991962 0.126533i \(-0.0403850\pi\)
\(158\) − 2.07794e27i − 0.682999i
\(159\) −4.59590e27 −1.39607
\(160\) 0 0
\(161\) 8.64224e27 2.24545
\(162\) 3.47132e27i 0.834751i
\(163\) 4.92749e27i 1.09719i 0.836089 + 0.548594i \(0.184837\pi\)
−0.836089 + 0.548594i \(0.815163\pi\)
\(164\) 4.41964e27 0.911673
\(165\) 0 0
\(166\) 2.13825e27 0.379059
\(167\) − 1.54847e26i − 0.0254651i −0.999919 0.0127326i \(-0.995947\pi\)
0.999919 0.0127326i \(-0.00405301\pi\)
\(168\) − 5.71894e27i − 0.872870i
\(169\) −8.14076e27 −1.15367
\(170\) 0 0
\(171\) 6.99325e27 0.855515
\(172\) − 2.29434e27i − 0.260947i
\(173\) − 1.24940e28i − 1.32168i −0.750527 0.660840i \(-0.770200\pi\)
0.750527 0.660840i \(-0.229800\pi\)
\(174\) −5.98921e27 −0.589527
\(175\) 0 0
\(176\) −4.60293e27 −0.392759
\(177\) − 8.43041e27i − 0.670167i
\(178\) − 4.72569e27i − 0.350118i
\(179\) −1.81393e28 −1.25302 −0.626509 0.779414i \(-0.715517\pi\)
−0.626509 + 0.779414i \(0.715517\pi\)
\(180\) 0 0
\(181\) −2.28334e28 −1.37274 −0.686369 0.727254i \(-0.740796\pi\)
−0.686369 + 0.727254i \(0.740796\pi\)
\(182\) − 3.43765e28i − 1.92916i
\(183\) − 1.88993e28i − 0.990390i
\(184\) −8.72340e27 −0.427035
\(185\) 0 0
\(186\) −1.67146e28 −0.714801
\(187\) 2.03310e28i 0.813091i
\(188\) − 1.18096e28i − 0.441837i
\(189\) −1.66694e28 −0.583642
\(190\) 0 0
\(191\) −3.88305e28 −1.19195 −0.595973 0.803005i \(-0.703233\pi\)
−0.595973 + 0.803005i \(0.703233\pi\)
\(192\) 5.77265e27i 0.166001i
\(193\) 5.16030e28i 1.39062i 0.718710 + 0.695310i \(0.244733\pi\)
−0.718710 + 0.695310i \(0.755267\pi\)
\(194\) 2.00340e28 0.506110
\(195\) 0 0
\(196\) 5.52613e28 1.22806
\(197\) − 4.39578e28i − 0.916659i −0.888782 0.458330i \(-0.848448\pi\)
0.888782 0.458330i \(-0.151552\pi\)
\(198\) − 4.33362e28i − 0.848274i
\(199\) −6.89463e28 −1.26721 −0.633604 0.773658i \(-0.718425\pi\)
−0.633604 + 0.773658i \(0.718425\pi\)
\(200\) 0 0
\(201\) 1.05970e29 1.71882
\(202\) − 5.70771e28i − 0.870102i
\(203\) − 8.14356e28i − 1.16712i
\(204\) 2.54976e28 0.343655
\(205\) 0 0
\(206\) 4.54934e28 0.542760
\(207\) − 8.21300e28i − 0.922301i
\(208\) 3.46993e28i 0.366885i
\(209\) 1.76758e29 1.76015
\(210\) 0 0
\(211\) 2.04578e29 1.80854 0.904269 0.426962i \(-0.140416\pi\)
0.904269 + 0.426962i \(0.140416\pi\)
\(212\) 6.30776e28i 0.525626i
\(213\) − 5.40147e28i − 0.424392i
\(214\) −9.37031e28 −0.694355
\(215\) 0 0
\(216\) 1.68259e28 0.110996
\(217\) − 2.27270e29i − 1.41513i
\(218\) 1.60733e29i 0.944926i
\(219\) −9.81777e28 −0.545081
\(220\) 0 0
\(221\) 1.53266e29 0.759525
\(222\) 2.51556e29i 1.17821i
\(223\) − 3.97032e29i − 1.75798i −0.476839 0.878991i \(-0.658217\pi\)
0.476839 0.878991i \(-0.341783\pi\)
\(224\) −7.84910e28 −0.328639
\(225\) 0 0
\(226\) 1.20900e29 0.452972
\(227\) 3.06368e29i 1.08623i 0.839660 + 0.543113i \(0.182754\pi\)
−0.839660 + 0.543113i \(0.817246\pi\)
\(228\) − 2.21676e29i − 0.743931i
\(229\) −2.92488e28 −0.0929319 −0.0464660 0.998920i \(-0.514796\pi\)
−0.0464660 + 0.998920i \(0.514796\pi\)
\(230\) 0 0
\(231\) 1.36091e30 3.87865
\(232\) 8.22004e28i 0.221960i
\(233\) − 3.00032e29i − 0.767748i −0.923385 0.383874i \(-0.874590\pi\)
0.923385 0.383874i \(-0.125410\pi\)
\(234\) −3.26691e29 −0.792390
\(235\) 0 0
\(236\) −1.15705e29 −0.252321
\(237\) − 6.20139e29i − 1.28273i
\(238\) 3.46692e29i 0.680350i
\(239\) 7.62279e29 1.41952 0.709758 0.704445i \(-0.248804\pi\)
0.709758 + 0.704445i \(0.248804\pi\)
\(240\) 0 0
\(241\) −5.68961e29 −0.954705 −0.477352 0.878712i \(-0.658403\pi\)
−0.477352 + 0.878712i \(0.658403\pi\)
\(242\) − 6.51553e29i − 1.03814i
\(243\) 8.28519e29i 1.25379i
\(244\) −2.59388e29 −0.372886
\(245\) 0 0
\(246\) 1.31899e30 1.71220
\(247\) − 1.33249e30i − 1.64419i
\(248\) 2.29404e29i 0.269126i
\(249\) 6.38136e29 0.711903
\(250\) 0 0
\(251\) 7.84848e29 0.792253 0.396127 0.918196i \(-0.370354\pi\)
0.396127 + 0.918196i \(0.370354\pi\)
\(252\) − 7.38986e29i − 0.709789i
\(253\) − 2.07587e30i − 1.89756i
\(254\) −1.52080e29 −0.132327
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) − 1.93819e30i − 1.45624i −0.685450 0.728119i \(-0.740395\pi\)
0.685450 0.728119i \(-0.259605\pi\)
\(258\) − 6.84722e29i − 0.490081i
\(259\) −3.42041e30 −2.33255
\(260\) 0 0
\(261\) −7.73909e29 −0.479384
\(262\) 8.30399e29i 0.490366i
\(263\) 7.76661e29i 0.437305i 0.975803 + 0.218653i \(0.0701661\pi\)
−0.975803 + 0.218653i \(0.929834\pi\)
\(264\) −1.37369e30 −0.737634
\(265\) 0 0
\(266\) 3.01414e30 1.47280
\(267\) − 1.41033e30i − 0.657551i
\(268\) − 1.45441e30i − 0.647145i
\(269\) −1.26958e30 −0.539209 −0.269604 0.962971i \(-0.586893\pi\)
−0.269604 + 0.962971i \(0.586893\pi\)
\(270\) 0 0
\(271\) −2.59506e29 −0.100469 −0.0502344 0.998737i \(-0.515997\pi\)
−0.0502344 + 0.998737i \(0.515997\pi\)
\(272\) − 3.49948e29i − 0.129388i
\(273\) − 1.02593e31i − 3.62313i
\(274\) −1.72637e30 −0.582442
\(275\) 0 0
\(276\) −2.60340e30 −0.802006
\(277\) − 4.20101e30i − 1.23696i −0.785799 0.618482i \(-0.787748\pi\)
0.785799 0.618482i \(-0.212252\pi\)
\(278\) − 1.07264e30i − 0.301922i
\(279\) −2.15982e30 −0.581253
\(280\) 0 0
\(281\) 7.34654e30 1.80823 0.904115 0.427290i \(-0.140532\pi\)
0.904115 + 0.427290i \(0.140532\pi\)
\(282\) − 3.52444e30i − 0.829806i
\(283\) 7.45011e30i 1.67816i 0.544011 + 0.839078i \(0.316905\pi\)
−0.544011 + 0.839078i \(0.683095\pi\)
\(284\) −7.41339e29 −0.159785
\(285\) 0 0
\(286\) −8.25727e30 −1.63028
\(287\) 1.79344e31i 3.38972i
\(288\) 7.45926e29i 0.134986i
\(289\) 4.22492e30 0.732142
\(290\) 0 0
\(291\) 5.97891e30 0.950517
\(292\) 1.34746e30i 0.205226i
\(293\) 3.40180e30i 0.496436i 0.968704 + 0.248218i \(0.0798449\pi\)
−0.968704 + 0.248218i \(0.920155\pi\)
\(294\) 1.64921e31 2.30640
\(295\) 0 0
\(296\) 3.45254e30 0.443601
\(297\) 4.00400e30i 0.493217i
\(298\) 2.18354e30i 0.257904i
\(299\) −1.56490e31 −1.77255
\(300\) 0 0
\(301\) 9.31020e30 0.970237
\(302\) 4.71839e29i 0.0471745i
\(303\) − 1.70340e31i − 1.63412i
\(304\) −3.04245e30 −0.280093
\(305\) 0 0
\(306\) 3.29473e30 0.279449
\(307\) − 2.05490e31i − 1.67325i −0.547778 0.836624i \(-0.684526\pi\)
0.547778 0.836624i \(-0.315474\pi\)
\(308\) − 1.86782e31i − 1.46033i
\(309\) 1.35770e31 1.01935
\(310\) 0 0
\(311\) −7.23094e28 −0.00500829 −0.00250415 0.999997i \(-0.500797\pi\)
−0.00250415 + 0.999997i \(0.500797\pi\)
\(312\) 1.03556e31i 0.689040i
\(313\) 1.14602e31i 0.732635i 0.930490 + 0.366318i \(0.119382\pi\)
−0.930490 + 0.366318i \(0.880618\pi\)
\(314\) −2.91300e30 −0.178945
\(315\) 0 0
\(316\) −8.51125e30 −0.482953
\(317\) 2.43704e31i 1.32929i 0.747158 + 0.664647i \(0.231418\pi\)
−0.747158 + 0.664647i \(0.768582\pi\)
\(318\) 1.88248e31i 0.987170i
\(319\) −1.95609e31 −0.986292
\(320\) 0 0
\(321\) −2.79646e31 −1.30406
\(322\) − 3.53986e31i − 1.58777i
\(323\) 1.34384e31i 0.579850i
\(324\) 1.42185e31 0.590258
\(325\) 0 0
\(326\) 2.01830e31 0.775828
\(327\) 4.79689e31i 1.77465i
\(328\) − 1.81029e31i − 0.644650i
\(329\) 4.79220e31 1.64281
\(330\) 0 0
\(331\) −3.61088e31 −1.14753 −0.573764 0.819021i \(-0.694517\pi\)
−0.573764 + 0.819021i \(0.694517\pi\)
\(332\) − 8.75825e30i − 0.268035i
\(333\) 3.25053e31i 0.958079i
\(334\) −6.34252e29 −0.0180066
\(335\) 0 0
\(336\) −2.34248e31 −0.617212
\(337\) − 5.01811e31i − 1.27399i −0.770868 0.636995i \(-0.780177\pi\)
0.770868 0.636995i \(-0.219823\pi\)
\(338\) 3.33446e31i 0.815767i
\(339\) 3.60813e31 0.850718
\(340\) 0 0
\(341\) −5.45905e31 −1.19588
\(342\) − 2.86443e31i − 0.604940i
\(343\) 1.32944e32i 2.70703i
\(344\) −9.39763e30 −0.184518
\(345\) 0 0
\(346\) −5.11756e31 −0.934569
\(347\) − 2.69651e31i − 0.474988i −0.971389 0.237494i \(-0.923674\pi\)
0.971389 0.237494i \(-0.0763261\pi\)
\(348\) 2.45318e31i 0.416859i
\(349\) −4.66669e31 −0.765052 −0.382526 0.923945i \(-0.624946\pi\)
−0.382526 + 0.923945i \(0.624946\pi\)
\(350\) 0 0
\(351\) 3.01842e31 0.460725
\(352\) 1.88536e31i 0.277723i
\(353\) 6.63592e31i 0.943446i 0.881747 + 0.471723i \(0.156368\pi\)
−0.881747 + 0.471723i \(0.843632\pi\)
\(354\) −3.45310e31 −0.473879
\(355\) 0 0
\(356\) −1.93564e31 −0.247571
\(357\) 1.03466e32i 1.27775i
\(358\) 7.42985e31i 0.886017i
\(359\) 7.18124e31 0.827025 0.413513 0.910498i \(-0.364302\pi\)
0.413513 + 0.910498i \(0.364302\pi\)
\(360\) 0 0
\(361\) 2.37566e31 0.255238
\(362\) 9.35254e31i 0.970672i
\(363\) − 1.94449e32i − 1.94972i
\(364\) −1.40806e32 −1.36413
\(365\) 0 0
\(366\) −7.74114e31 −0.700311
\(367\) 8.09654e31i 0.707903i 0.935264 + 0.353951i \(0.115162\pi\)
−0.935264 + 0.353951i \(0.884838\pi\)
\(368\) 3.57310e31i 0.301959i
\(369\) 1.70437e32 1.39230
\(370\) 0 0
\(371\) −2.55962e32 −1.95435
\(372\) 6.84632e31i 0.505441i
\(373\) − 1.63975e32i − 1.17063i −0.810807 0.585313i \(-0.800972\pi\)
0.810807 0.585313i \(-0.199028\pi\)
\(374\) 8.32758e31 0.574942
\(375\) 0 0
\(376\) −4.83721e31 −0.312426
\(377\) 1.47460e32i 0.921316i
\(378\) 6.82777e31i 0.412697i
\(379\) 5.11219e31 0.298963 0.149481 0.988765i \(-0.452240\pi\)
0.149481 + 0.988765i \(0.452240\pi\)
\(380\) 0 0
\(381\) −4.53865e31 −0.248522
\(382\) 1.59050e32i 0.842833i
\(383\) − 2.90570e32i − 1.49028i −0.666911 0.745138i \(-0.732384\pi\)
0.666911 0.745138i \(-0.267616\pi\)
\(384\) 2.36448e31 0.117380
\(385\) 0 0
\(386\) 2.11366e32 0.983317
\(387\) − 8.84778e31i − 0.398518i
\(388\) − 8.20591e31i − 0.357874i
\(389\) −9.70428e31 −0.409820 −0.204910 0.978781i \(-0.565690\pi\)
−0.204910 + 0.978781i \(0.565690\pi\)
\(390\) 0 0
\(391\) 1.57823e32 0.625116
\(392\) − 2.26350e32i − 0.868371i
\(393\) 2.47823e32i 0.920948i
\(394\) −1.80051e32 −0.648176
\(395\) 0 0
\(396\) −1.77505e32 −0.599820
\(397\) 4.94379e32i 1.61875i 0.587295 + 0.809373i \(0.300193\pi\)
−0.587295 + 0.809373i \(0.699807\pi\)
\(398\) 2.82404e32i 0.896051i
\(399\) 8.99536e32 2.76603
\(400\) 0 0
\(401\) 4.47162e31 0.129170 0.0645848 0.997912i \(-0.479428\pi\)
0.0645848 + 0.997912i \(0.479428\pi\)
\(402\) − 4.34052e32i − 1.21539i
\(403\) 4.11531e32i 1.11709i
\(404\) −2.33788e32 −0.615255
\(405\) 0 0
\(406\) −3.33560e32 −0.825275
\(407\) 8.21587e32i 1.97117i
\(408\) − 1.04438e32i − 0.243001i
\(409\) −3.47804e32 −0.784863 −0.392431 0.919781i \(-0.628366\pi\)
−0.392431 + 0.919781i \(0.628366\pi\)
\(410\) 0 0
\(411\) −5.15217e32 −1.09387
\(412\) − 1.86341e32i − 0.383789i
\(413\) − 4.69519e32i − 0.938162i
\(414\) −3.36404e32 −0.652165
\(415\) 0 0
\(416\) 1.42128e32 0.259427
\(417\) − 3.20119e32i − 0.567035i
\(418\) − 7.23999e32i − 1.24461i
\(419\) 1.64856e32 0.275061 0.137531 0.990498i \(-0.456083\pi\)
0.137531 + 0.990498i \(0.456083\pi\)
\(420\) 0 0
\(421\) 4.59846e32 0.722914 0.361457 0.932389i \(-0.382279\pi\)
0.361457 + 0.932389i \(0.382279\pi\)
\(422\) − 8.37951e32i − 1.27883i
\(423\) − 4.55419e32i − 0.674771i
\(424\) 2.58366e32 0.371674
\(425\) 0 0
\(426\) −2.21244e32 −0.300090
\(427\) − 1.05257e33i − 1.38644i
\(428\) 3.83808e32i 0.490983i
\(429\) −2.46429e33 −3.06179
\(430\) 0 0
\(431\) 7.08014e32 0.829996 0.414998 0.909822i \(-0.363782\pi\)
0.414998 + 0.909822i \(0.363782\pi\)
\(432\) − 6.89190e31i − 0.0784860i
\(433\) − 1.74438e32i − 0.192993i −0.995333 0.0964964i \(-0.969236\pi\)
0.995333 0.0964964i \(-0.0307636\pi\)
\(434\) −9.30898e32 −1.00065
\(435\) 0 0
\(436\) 6.58361e32 0.668164
\(437\) − 1.37211e33i − 1.35323i
\(438\) 4.02136e32i 0.385431i
\(439\) 9.83917e32 0.916541 0.458271 0.888813i \(-0.348469\pi\)
0.458271 + 0.888813i \(0.348469\pi\)
\(440\) 0 0
\(441\) 2.13107e33 1.87549
\(442\) − 6.27777e32i − 0.537065i
\(443\) 9.66613e32i 0.803908i 0.915660 + 0.401954i \(0.131669\pi\)
−0.915660 + 0.401954i \(0.868331\pi\)
\(444\) 1.03037e33 0.833118
\(445\) 0 0
\(446\) −1.62624e33 −1.24308
\(447\) 6.51654e32i 0.484365i
\(448\) 3.21499e32i 0.232383i
\(449\) −5.74227e32 −0.403650 −0.201825 0.979422i \(-0.564687\pi\)
−0.201825 + 0.979422i \(0.564687\pi\)
\(450\) 0 0
\(451\) 4.30787e33 2.86454
\(452\) − 4.95207e32i − 0.320299i
\(453\) 1.40815e32i 0.0885977i
\(454\) 1.25488e33 0.768078
\(455\) 0 0
\(456\) −9.07984e32 −0.526039
\(457\) 3.19404e33i 1.80048i 0.435398 + 0.900238i \(0.356608\pi\)
−0.435398 + 0.900238i \(0.643392\pi\)
\(458\) 1.19803e32i 0.0657128i
\(459\) −3.04413e32 −0.162482
\(460\) 0 0
\(461\) 2.15114e33 1.08745 0.543723 0.839264i \(-0.317014\pi\)
0.543723 + 0.839264i \(0.317014\pi\)
\(462\) − 5.57430e33i − 2.74262i
\(463\) − 6.57140e32i − 0.314699i −0.987543 0.157350i \(-0.949705\pi\)
0.987543 0.157350i \(-0.0502950\pi\)
\(464\) 3.36693e32 0.156949
\(465\) 0 0
\(466\) −1.22893e33 −0.542880
\(467\) 1.92599e32i 0.0828312i 0.999142 + 0.0414156i \(0.0131868\pi\)
−0.999142 + 0.0414156i \(0.986813\pi\)
\(468\) 1.33813e33i 0.560304i
\(469\) 5.90183e33 2.40617
\(470\) 0 0
\(471\) −8.69352e32 −0.336074
\(472\) 4.73929e32i 0.178418i
\(473\) − 2.23632e33i − 0.819916i
\(474\) −2.54009e33 −0.907026
\(475\) 0 0
\(476\) 1.42005e33 0.481080
\(477\) 2.43249e33i 0.802734i
\(478\) − 3.12230e33i − 1.00375i
\(479\) −3.90669e33 −1.22353 −0.611766 0.791039i \(-0.709541\pi\)
−0.611766 + 0.791039i \(0.709541\pi\)
\(480\) 0 0
\(481\) 6.19355e33 1.84131
\(482\) 2.33046e33i 0.675078i
\(483\) − 1.05643e34i − 2.98196i
\(484\) −2.66876e33 −0.734079
\(485\) 0 0
\(486\) 3.39361e33 0.886562
\(487\) 4.17680e33i 1.06349i 0.846906 + 0.531743i \(0.178463\pi\)
−0.846906 + 0.531743i \(0.821537\pi\)
\(488\) 1.06245e33i 0.263670i
\(489\) 6.02339e33 1.45707
\(490\) 0 0
\(491\) −1.40550e33 −0.323083 −0.161541 0.986866i \(-0.551647\pi\)
−0.161541 + 0.986866i \(0.551647\pi\)
\(492\) − 5.40260e33i − 1.21071i
\(493\) − 1.48716e33i − 0.324916i
\(494\) −5.45788e33 −1.16262
\(495\) 0 0
\(496\) 9.39640e32 0.190301
\(497\) − 3.00827e33i − 0.594103i
\(498\) − 2.61380e33i − 0.503392i
\(499\) −8.69572e32 −0.163323 −0.0816617 0.996660i \(-0.526023\pi\)
−0.0816617 + 0.996660i \(0.526023\pi\)
\(500\) 0 0
\(501\) −1.89285e32 −0.0338178
\(502\) − 3.21474e33i − 0.560208i
\(503\) 7.81824e33i 1.32895i 0.747310 + 0.664476i \(0.231345\pi\)
−0.747310 + 0.664476i \(0.768655\pi\)
\(504\) −3.02688e33 −0.501897
\(505\) 0 0
\(506\) −8.50278e33 −1.34177
\(507\) 9.95131e33i 1.53208i
\(508\) 6.22918e32i 0.0935696i
\(509\) 7.92846e33 1.16203 0.581014 0.813894i \(-0.302656\pi\)
0.581014 + 0.813894i \(0.302656\pi\)
\(510\) 0 0
\(511\) −5.46786e33 −0.763056
\(512\) − 3.24519e32i − 0.0441942i
\(513\) 2.64656e33i 0.351734i
\(514\) −7.93883e33 −1.02972
\(515\) 0 0
\(516\) −2.80462e33 −0.346539
\(517\) − 1.15109e34i − 1.38828i
\(518\) 1.40100e34i 1.64936i
\(519\) −1.52728e34 −1.75520
\(520\) 0 0
\(521\) −3.29787e33 −0.361212 −0.180606 0.983556i \(-0.557806\pi\)
−0.180606 + 0.983556i \(0.557806\pi\)
\(522\) 3.16993e33i 0.338976i
\(523\) 1.60818e33i 0.167905i 0.996470 + 0.0839524i \(0.0267544\pi\)
−0.996470 + 0.0839524i \(0.973246\pi\)
\(524\) 3.40131e33 0.346741
\(525\) 0 0
\(526\) 3.18120e33 0.309221
\(527\) − 4.15036e33i − 0.393961i
\(528\) 5.62665e33i 0.521586i
\(529\) −5.06855e33 −0.458868
\(530\) 0 0
\(531\) −4.46199e33 −0.385343
\(532\) − 1.23459e34i − 1.04142i
\(533\) − 3.24750e34i − 2.67583i
\(534\) −5.77671e33 −0.464959
\(535\) 0 0
\(536\) −5.95726e33 −0.457601
\(537\) 2.21736e34i 1.66401i
\(538\) 5.20020e33i 0.381278i
\(539\) 5.38637e34 3.85866
\(540\) 0 0
\(541\) −1.05559e34 −0.721990 −0.360995 0.932568i \(-0.617563\pi\)
−0.360995 + 0.932568i \(0.617563\pi\)
\(542\) 1.06294e33i 0.0710422i
\(543\) 2.79116e34i 1.82300i
\(544\) −1.43339e33 −0.0914908
\(545\) 0 0
\(546\) −4.20220e34 −2.56194
\(547\) 2.41768e34i 1.44065i 0.693638 + 0.720324i \(0.256007\pi\)
−0.693638 + 0.720324i \(0.743993\pi\)
\(548\) 7.07122e33i 0.411848i
\(549\) −1.00029e34 −0.569470
\(550\) 0 0
\(551\) −1.29294e34 −0.703367
\(552\) 1.06635e34i 0.567104i
\(553\) − 3.45377e34i − 1.79568i
\(554\) −1.72073e34 −0.874665
\(555\) 0 0
\(556\) −4.39355e33 −0.213491
\(557\) − 1.98926e34i − 0.945153i −0.881290 0.472576i \(-0.843324\pi\)
0.881290 0.472576i \(-0.156676\pi\)
\(558\) 8.84662e33i 0.411008i
\(559\) −1.68585e34 −0.765901
\(560\) 0 0
\(561\) 2.48527e34 1.07979
\(562\) − 3.00914e34i − 1.27861i
\(563\) 3.43624e34i 1.42800i 0.700145 + 0.714001i \(0.253119\pi\)
−0.700145 + 0.714001i \(0.746881\pi\)
\(564\) −1.44361e34 −0.586762
\(565\) 0 0
\(566\) 3.05157e34 1.18664
\(567\) 5.76972e34i 2.19466i
\(568\) 3.03652e33i 0.112985i
\(569\) 4.74393e34 1.72677 0.863386 0.504544i \(-0.168339\pi\)
0.863386 + 0.504544i \(0.168339\pi\)
\(570\) 0 0
\(571\) −4.26964e33 −0.148744 −0.0743721 0.997231i \(-0.523695\pi\)
−0.0743721 + 0.997231i \(0.523695\pi\)
\(572\) 3.38218e34i 1.15278i
\(573\) 4.74667e34i 1.58291i
\(574\) 7.34594e34 2.39689
\(575\) 0 0
\(576\) 3.05531e33 0.0954497
\(577\) − 1.96194e34i − 0.599775i −0.953975 0.299887i \(-0.903051\pi\)
0.953975 0.299887i \(-0.0969491\pi\)
\(578\) − 1.73053e34i − 0.517702i
\(579\) 6.30798e34 1.84675
\(580\) 0 0
\(581\) 3.55400e34 0.996589
\(582\) − 2.44896e34i − 0.672117i
\(583\) 6.14824e34i 1.65156i
\(584\) 5.51921e33 0.145116
\(585\) 0 0
\(586\) 1.39338e34 0.351033
\(587\) 4.23298e34i 1.04393i 0.852968 + 0.521963i \(0.174800\pi\)
−0.852968 + 0.521963i \(0.825200\pi\)
\(588\) − 6.75518e34i − 1.63087i
\(589\) −3.60832e34 −0.852832
\(590\) 0 0
\(591\) −5.37343e34 −1.21733
\(592\) − 1.41416e34i − 0.313673i
\(593\) 2.29135e34i 0.497631i 0.968551 + 0.248816i \(0.0800413\pi\)
−0.968551 + 0.248816i \(0.919959\pi\)
\(594\) 1.64004e34 0.348757
\(595\) 0 0
\(596\) 8.94379e33 0.182366
\(597\) 8.42804e34i 1.68286i
\(598\) 6.40984e34i 1.25338i
\(599\) −1.21937e34 −0.233508 −0.116754 0.993161i \(-0.537249\pi\)
−0.116754 + 0.993161i \(0.537249\pi\)
\(600\) 0 0
\(601\) −2.38798e33 −0.0438631 −0.0219315 0.999759i \(-0.506982\pi\)
−0.0219315 + 0.999759i \(0.506982\pi\)
\(602\) − 3.81346e34i − 0.686061i
\(603\) − 5.60870e34i − 0.988317i
\(604\) 1.93265e33 0.0333574
\(605\) 0 0
\(606\) −6.97714e34 −1.15550
\(607\) 2.92481e34i 0.474504i 0.971448 + 0.237252i \(0.0762466\pi\)
−0.971448 + 0.237252i \(0.923753\pi\)
\(608\) 1.24619e34i 0.198056i
\(609\) −9.95473e34 −1.54993
\(610\) 0 0
\(611\) −8.67754e34 −1.29682
\(612\) − 1.34952e34i − 0.197600i
\(613\) 6.94539e34i 0.996416i 0.867057 + 0.498208i \(0.166008\pi\)
−0.867057 + 0.498208i \(0.833992\pi\)
\(614\) −8.41686e34 −1.18316
\(615\) 0 0
\(616\) −7.65059e34 −1.03261
\(617\) 4.20916e34i 0.556713i 0.960478 + 0.278356i \(0.0897896\pi\)
−0.960478 + 0.278356i \(0.910210\pi\)
\(618\) − 5.56114e34i − 0.720788i
\(619\) −5.93194e34 −0.753466 −0.376733 0.926322i \(-0.622953\pi\)
−0.376733 + 0.926322i \(0.622953\pi\)
\(620\) 0 0
\(621\) 3.10817e34 0.379193
\(622\) 2.96179e32i 0.00354140i
\(623\) − 7.85462e34i − 0.920502i
\(624\) 4.24167e34 0.487225
\(625\) 0 0
\(626\) 4.69410e34 0.518051
\(627\) − 2.16069e35i − 2.33749i
\(628\) 1.19316e34i 0.126533i
\(629\) −6.24630e34 −0.649366
\(630\) 0 0
\(631\) 1.46762e35 1.46638 0.733192 0.680022i \(-0.238030\pi\)
0.733192 + 0.680022i \(0.238030\pi\)
\(632\) 3.48621e34i 0.341499i
\(633\) − 2.50077e35i − 2.40175i
\(634\) 9.98210e34 0.939953
\(635\) 0 0
\(636\) 7.71065e34 0.698034
\(637\) − 4.06053e35i − 3.60446i
\(638\) 8.01215e34i 0.697414i
\(639\) −2.85886e34 −0.244024
\(640\) 0 0
\(641\) 1.22792e35 1.00796 0.503982 0.863714i \(-0.331868\pi\)
0.503982 + 0.863714i \(0.331868\pi\)
\(642\) 1.14543e35i 0.922107i
\(643\) 1.26806e34i 0.100116i 0.998746 + 0.0500579i \(0.0159406\pi\)
−0.998746 + 0.0500579i \(0.984059\pi\)
\(644\) −1.44993e35 −1.12272
\(645\) 0 0
\(646\) 5.50436e34 0.410016
\(647\) − 3.01852e34i − 0.220541i −0.993902 0.110271i \(-0.964828\pi\)
0.993902 0.110271i \(-0.0351718\pi\)
\(648\) − 5.82391e34i − 0.417376i
\(649\) −1.12779e35 −0.792811
\(650\) 0 0
\(651\) −2.77816e35 −1.87930
\(652\) − 8.26696e34i − 0.548594i
\(653\) 1.81062e35i 1.17872i 0.807870 + 0.589361i \(0.200620\pi\)
−0.807870 + 0.589361i \(0.799380\pi\)
\(654\) 1.96481e35 1.25487
\(655\) 0 0
\(656\) −7.41493e34 −0.455836
\(657\) 5.19629e34i 0.313420i
\(658\) − 1.96289e35i − 1.16164i
\(659\) 2.69289e35 1.56369 0.781847 0.623471i \(-0.214278\pi\)
0.781847 + 0.623471i \(0.214278\pi\)
\(660\) 0 0
\(661\) 3.11605e35 1.74215 0.871075 0.491150i \(-0.163423\pi\)
0.871075 + 0.491150i \(0.163423\pi\)
\(662\) 1.47902e35i 0.811424i
\(663\) − 1.87353e35i − 1.00865i
\(664\) −3.58738e34 −0.189529
\(665\) 0 0
\(666\) 1.33142e35 0.677464
\(667\) 1.51845e35i 0.758276i
\(668\) 2.59789e33i 0.0127326i
\(669\) −4.85334e35 −2.33461
\(670\) 0 0
\(671\) −2.52828e35 −1.17164
\(672\) 9.59479e34i 0.436435i
\(673\) − 1.24919e35i − 0.557752i −0.960327 0.278876i \(-0.910038\pi\)
0.960327 0.278876i \(-0.0899618\pi\)
\(674\) −2.05542e35 −0.900848
\(675\) 0 0
\(676\) 1.36579e35 0.576834
\(677\) − 2.88499e35i − 1.19615i −0.801440 0.598075i \(-0.795933\pi\)
0.801440 0.598075i \(-0.204067\pi\)
\(678\) − 1.47789e35i − 0.601549i
\(679\) 3.32987e35 1.33062
\(680\) 0 0
\(681\) 3.74506e35 1.44251
\(682\) 2.23603e35i 0.845614i
\(683\) 3.81708e34i 0.141733i 0.997486 + 0.0708667i \(0.0225765\pi\)
−0.997486 + 0.0708667i \(0.977423\pi\)
\(684\) −1.17327e35 −0.427757
\(685\) 0 0
\(686\) 5.44540e35 1.91416
\(687\) 3.57539e34i 0.123414i
\(688\) 3.84927e34i 0.130474i
\(689\) 4.63486e35 1.54275
\(690\) 0 0
\(691\) −2.01041e35 −0.645372 −0.322686 0.946506i \(-0.604586\pi\)
−0.322686 + 0.946506i \(0.604586\pi\)
\(692\) 2.09615e35i 0.660840i
\(693\) − 7.20296e35i − 2.23021i
\(694\) −1.10449e35 −0.335867
\(695\) 0 0
\(696\) 1.00482e35 0.294764
\(697\) 3.27515e35i 0.943673i
\(698\) 1.91148e35i 0.540974i
\(699\) −3.66761e35 −1.01957
\(700\) 0 0
\(701\) 1.78724e35 0.479411 0.239705 0.970846i \(-0.422949\pi\)
0.239705 + 0.970846i \(0.422949\pi\)
\(702\) − 1.23635e35i − 0.325781i
\(703\) 5.43052e35i 1.40572i
\(704\) 7.72244e34 0.196380
\(705\) 0 0
\(706\) 2.71807e35 0.667117
\(707\) − 9.48686e35i − 2.28760i
\(708\) 1.41439e35i 0.335083i
\(709\) −5.59205e33 −0.0130165 −0.00650824 0.999979i \(-0.502072\pi\)
−0.00650824 + 0.999979i \(0.502072\pi\)
\(710\) 0 0
\(711\) −3.28223e35 −0.737564
\(712\) 7.92839e34i 0.175059i
\(713\) 4.23768e35i 0.919409i
\(714\) 4.23799e35 0.903508
\(715\) 0 0
\(716\) 3.04327e35 0.626509
\(717\) − 9.31815e35i − 1.88512i
\(718\) − 2.94144e35i − 0.584795i
\(719\) −3.90750e35 −0.763463 −0.381732 0.924273i \(-0.624672\pi\)
−0.381732 + 0.924273i \(0.624672\pi\)
\(720\) 0 0
\(721\) 7.56151e35 1.42698
\(722\) − 9.73071e34i − 0.180480i
\(723\) 6.95501e35i 1.26785i
\(724\) 3.83080e35 0.686369
\(725\) 0 0
\(726\) −7.96462e35 −1.37866
\(727\) 9.31579e35i 1.58504i 0.609848 + 0.792518i \(0.291230\pi\)
−0.609848 + 0.792518i \(0.708770\pi\)
\(728\) 5.76742e35i 0.964582i
\(729\) 2.94718e35 0.484520
\(730\) 0 0
\(731\) 1.70021e35 0.270107
\(732\) 3.17077e35i 0.495195i
\(733\) 2.49884e35i 0.383653i 0.981429 + 0.191826i \(0.0614410\pi\)
−0.981429 + 0.191826i \(0.938559\pi\)
\(734\) 3.31634e35 0.500563
\(735\) 0 0
\(736\) 1.46354e35 0.213517
\(737\) − 1.41763e36i − 2.03338i
\(738\) − 6.98109e35i − 0.984506i
\(739\) 1.12909e35 0.156558 0.0782788 0.996932i \(-0.475058\pi\)
0.0782788 + 0.996932i \(0.475058\pi\)
\(740\) 0 0
\(741\) −1.62885e36 −2.18349
\(742\) 1.04842e36i 1.38193i
\(743\) 3.71494e35i 0.481495i 0.970588 + 0.240748i \(0.0773926\pi\)
−0.970588 + 0.240748i \(0.922607\pi\)
\(744\) 2.80425e35 0.357401
\(745\) 0 0
\(746\) −6.71643e35 −0.827758
\(747\) − 3.37748e35i − 0.409342i
\(748\) − 3.41098e35i − 0.406545i
\(749\) −1.55745e36 −1.82554
\(750\) 0 0
\(751\) −6.99646e35 −0.793194 −0.396597 0.917993i \(-0.629809\pi\)
−0.396597 + 0.917993i \(0.629809\pi\)
\(752\) 1.98132e35i 0.220918i
\(753\) − 9.59403e35i − 1.05212i
\(754\) 6.03998e35 0.651469
\(755\) 0 0
\(756\) 2.79666e35 0.291821
\(757\) − 7.64525e35i − 0.784681i −0.919820 0.392341i \(-0.871665\pi\)
0.919820 0.392341i \(-0.128335\pi\)
\(758\) − 2.09395e35i − 0.211399i
\(759\) −2.53756e36 −2.51996
\(760\) 0 0
\(761\) −7.74903e35 −0.744628 −0.372314 0.928107i \(-0.621436\pi\)
−0.372314 + 0.928107i \(0.621436\pi\)
\(762\) 1.85903e35i 0.175731i
\(763\) 2.67156e36i 2.48432i
\(764\) 6.51468e35 0.595973
\(765\) 0 0
\(766\) −1.19018e36 −1.05378
\(767\) 8.50187e35i 0.740581i
\(768\) − 9.68490e34i − 0.0830003i
\(769\) 1.04301e36 0.879447 0.439723 0.898133i \(-0.355077\pi\)
0.439723 + 0.898133i \(0.355077\pi\)
\(770\) 0 0
\(771\) −2.36926e36 −1.93389
\(772\) − 8.65755e35i − 0.695310i
\(773\) − 1.42237e36i − 1.12400i −0.827136 0.562002i \(-0.810031\pi\)
0.827136 0.562002i \(-0.189969\pi\)
\(774\) −3.62405e35 −0.281794
\(775\) 0 0
\(776\) −3.36114e35 −0.253055
\(777\) 4.18114e36i 3.09764i
\(778\) 3.97487e35i 0.289786i
\(779\) 2.84741e36 2.04283
\(780\) 0 0
\(781\) −7.22590e35 −0.502058
\(782\) − 6.46443e35i − 0.442024i
\(783\) − 2.92882e35i − 0.197093i
\(784\) −9.27131e35 −0.614031
\(785\) 0 0
\(786\) 1.01508e36 0.651209
\(787\) 2.40737e36i 1.52005i 0.649892 + 0.760026i \(0.274814\pi\)
−0.649892 + 0.760026i \(0.725186\pi\)
\(788\) 7.37489e35i 0.458330i
\(789\) 9.49395e35 0.580743
\(790\) 0 0
\(791\) 2.00949e36 1.19092
\(792\) 7.27061e35i 0.424137i
\(793\) 1.90595e36i 1.09445i
\(794\) 2.02498e36 1.14463
\(795\) 0 0
\(796\) 1.15673e36 0.633604
\(797\) − 9.73330e35i − 0.524845i −0.964953 0.262423i \(-0.915479\pi\)
0.964953 0.262423i \(-0.0845215\pi\)
\(798\) − 3.68450e36i − 1.95588i
\(799\) 8.75143e35 0.457345
\(800\) 0 0
\(801\) −7.46450e35 −0.378089
\(802\) − 1.83158e35i − 0.0913368i
\(803\) 1.31339e36i 0.644834i
\(804\) −1.77788e36 −0.859412
\(805\) 0 0
\(806\) 1.68563e36 0.789905
\(807\) 1.55194e36i 0.716072i
\(808\) 9.57595e35i 0.435051i
\(809\) −3.20638e36 −1.43436 −0.717179 0.696889i \(-0.754567\pi\)
−0.717179 + 0.696889i \(0.754567\pi\)
\(810\) 0 0
\(811\) 2.99227e36 1.29790 0.648948 0.760833i \(-0.275209\pi\)
0.648948 + 0.760833i \(0.275209\pi\)
\(812\) 1.36626e36i 0.583558i
\(813\) 3.17222e35i 0.133423i
\(814\) 3.36522e36 1.39383
\(815\) 0 0
\(816\) −4.27779e35 −0.171827
\(817\) − 1.47816e36i − 0.584717i
\(818\) 1.42461e36i 0.554982i
\(819\) −5.42997e36 −2.08328
\(820\) 0 0
\(821\) −4.26235e36 −1.58621 −0.793103 0.609087i \(-0.791536\pi\)
−0.793103 + 0.609087i \(0.791536\pi\)
\(822\) 2.11033e36i 0.773485i
\(823\) − 5.35214e36i − 1.93210i −0.258352 0.966051i \(-0.583180\pi\)
0.258352 0.966051i \(-0.416820\pi\)
\(824\) −7.63252e35 −0.271380
\(825\) 0 0
\(826\) −1.92315e36 −0.663381
\(827\) 3.57743e36i 1.21549i 0.794131 + 0.607747i \(0.207926\pi\)
−0.794131 + 0.607747i \(0.792074\pi\)
\(828\) 1.37791e36i 0.461150i
\(829\) 4.26555e36 1.40619 0.703095 0.711096i \(-0.251801\pi\)
0.703095 + 0.711096i \(0.251801\pi\)
\(830\) 0 0
\(831\) −5.13534e36 −1.64269
\(832\) − 5.82158e35i − 0.183442i
\(833\) 4.09511e36i 1.27117i
\(834\) −1.31121e36 −0.400955
\(835\) 0 0
\(836\) −2.96550e36 −0.880075
\(837\) − 8.17374e35i − 0.238975i
\(838\) − 6.75250e35i − 0.194498i
\(839\) 5.62994e36 1.59764 0.798820 0.601570i \(-0.205458\pi\)
0.798820 + 0.601570i \(0.205458\pi\)
\(840\) 0 0
\(841\) −2.19953e36 −0.605871
\(842\) − 1.88353e36i − 0.511177i
\(843\) − 8.98045e36i − 2.40134i
\(844\) −3.43225e36 −0.904269
\(845\) 0 0
\(846\) −1.86540e36 −0.477135
\(847\) − 1.08295e37i − 2.72940i
\(848\) − 1.05827e36i − 0.262813i
\(849\) 9.10706e36 2.22860
\(850\) 0 0
\(851\) 6.37771e36 1.51546
\(852\) 9.06217e35i 0.212196i
\(853\) 4.55647e36i 1.05139i 0.850672 + 0.525697i \(0.176195\pi\)
−0.850672 + 0.525697i \(0.823805\pi\)
\(854\) −4.31131e36 −0.980361
\(855\) 0 0
\(856\) 1.57208e36 0.347178
\(857\) 7.95266e35i 0.173082i 0.996248 + 0.0865411i \(0.0275814\pi\)
−0.996248 + 0.0865411i \(0.972419\pi\)
\(858\) 1.00937e37i 2.16501i
\(859\) −1.26545e36 −0.267505 −0.133752 0.991015i \(-0.542703\pi\)
−0.133752 + 0.991015i \(0.542703\pi\)
\(860\) 0 0
\(861\) 2.19231e37 4.50156
\(862\) − 2.90003e36i − 0.586896i
\(863\) 3.32635e36i 0.663487i 0.943370 + 0.331744i \(0.107637\pi\)
−0.943370 + 0.331744i \(0.892363\pi\)
\(864\) −2.82292e35 −0.0554979
\(865\) 0 0
\(866\) −7.14496e35 −0.136467
\(867\) − 5.16456e36i − 0.972288i
\(868\) 3.81296e36i 0.707563i
\(869\) −8.29600e36 −1.51747
\(870\) 0 0
\(871\) −1.06868e37 −1.89942
\(872\) − 2.69665e36i − 0.472463i
\(873\) − 3.16448e36i − 0.546543i
\(874\) −5.62016e36 −0.956877
\(875\) 0 0
\(876\) 1.64715e36 0.272541
\(877\) − 5.26043e36i − 0.858078i −0.903286 0.429039i \(-0.858852\pi\)
0.903286 0.429039i \(-0.141148\pi\)
\(878\) − 4.03012e36i − 0.648093i
\(879\) 4.15838e36 0.659269
\(880\) 0 0
\(881\) 5.34809e36 0.824137 0.412069 0.911153i \(-0.364806\pi\)
0.412069 + 0.911153i \(0.364806\pi\)
\(882\) − 8.72885e36i − 1.32617i
\(883\) 3.32166e36i 0.497560i 0.968560 + 0.248780i \(0.0800297\pi\)
−0.968560 + 0.248780i \(0.919970\pi\)
\(884\) −2.57137e36 −0.379762
\(885\) 0 0
\(886\) 3.95925e36 0.568449
\(887\) − 8.17924e36i − 1.15789i −0.815366 0.578945i \(-0.803464\pi\)
0.815366 0.578945i \(-0.196536\pi\)
\(888\) − 4.22040e36i − 0.589104i
\(889\) −2.52773e36 −0.347904
\(890\) 0 0
\(891\) 1.38589e37 1.85464
\(892\) 6.66109e36i 0.878991i
\(893\) − 7.60848e36i − 0.990045i
\(894\) 2.66917e36 0.342498
\(895\) 0 0
\(896\) 1.31686e36 0.164320
\(897\) 1.91295e37i 2.35395i
\(898\) 2.35204e36i 0.285423i
\(899\) 3.99315e36 0.477881
\(900\) 0 0
\(901\) −4.67433e36 −0.544076
\(902\) − 1.76450e37i − 2.02554i
\(903\) − 1.13808e37i − 1.28848i
\(904\) −2.02837e36 −0.226486
\(905\) 0 0
\(906\) 5.76779e35 0.0626480
\(907\) 1.71298e37i 1.83511i 0.397615 + 0.917553i \(0.369838\pi\)
−0.397615 + 0.917553i \(0.630162\pi\)
\(908\) − 5.14000e36i − 0.543113i
\(909\) −9.01567e36 −0.939614
\(910\) 0 0
\(911\) 6.12131e36 0.620676 0.310338 0.950626i \(-0.399558\pi\)
0.310338 + 0.950626i \(0.399558\pi\)
\(912\) 3.71910e36i 0.371966i
\(913\) − 8.53675e36i − 0.842186i
\(914\) 1.30828e37 1.27313
\(915\) 0 0
\(916\) 4.90714e35 0.0464660
\(917\) 1.38022e37i 1.28923i
\(918\) 1.24687e36i 0.114892i
\(919\) 1.52693e36 0.138795 0.0693977 0.997589i \(-0.477892\pi\)
0.0693977 + 0.997589i \(0.477892\pi\)
\(920\) 0 0
\(921\) −2.51192e37 −2.22208
\(922\) − 8.81109e36i − 0.768941i
\(923\) 5.44726e36i 0.468983i
\(924\) −2.28323e37 −1.93933
\(925\) 0 0
\(926\) −2.69165e36 −0.222526
\(927\) − 7.18595e36i − 0.586121i
\(928\) − 1.37909e36i − 0.110980i
\(929\) −1.93910e36 −0.153959 −0.0769793 0.997033i \(-0.524528\pi\)
−0.0769793 + 0.997033i \(0.524528\pi\)
\(930\) 0 0
\(931\) 3.56028e37 2.75178
\(932\) 5.03370e36i 0.383874i
\(933\) 8.83914e34i 0.00665104i
\(934\) 7.88887e35 0.0585705
\(935\) 0 0
\(936\) 5.48097e36 0.396195
\(937\) 1.01514e37i 0.724069i 0.932165 + 0.362035i \(0.117918\pi\)
−0.932165 + 0.362035i \(0.882082\pi\)
\(938\) − 2.41739e37i − 1.70142i
\(939\) 1.40090e37 0.972944
\(940\) 0 0
\(941\) 4.58463e36 0.310051 0.155026 0.987910i \(-0.450454\pi\)
0.155026 + 0.987910i \(0.450454\pi\)
\(942\) 3.56087e36i 0.237640i
\(943\) − 3.34405e37i − 2.20230i
\(944\) 1.94121e36 0.126160
\(945\) 0 0
\(946\) −9.15996e36 −0.579768
\(947\) − 2.00468e37i − 1.25219i −0.779748 0.626094i \(-0.784653\pi\)
0.779748 0.626094i \(-0.215347\pi\)
\(948\) 1.04042e37i 0.641364i
\(949\) 9.90099e36 0.602353
\(950\) 0 0
\(951\) 2.97905e37 1.76531
\(952\) − 5.81653e36i − 0.340175i
\(953\) 2.53894e37i 1.46552i 0.680489 + 0.732758i \(0.261767\pi\)
−0.680489 + 0.732758i \(0.738233\pi\)
\(954\) 9.96348e36 0.567619
\(955\) 0 0
\(956\) −1.27889e37 −0.709758
\(957\) 2.39114e37i 1.30980i
\(958\) 1.60018e37i 0.865168i
\(959\) −2.86942e37 −1.53131
\(960\) 0 0
\(961\) −8.08873e36 −0.420570
\(962\) − 2.53688e37i − 1.30200i
\(963\) 1.48010e37i 0.749827i
\(964\) 9.54557e36 0.477352
\(965\) 0 0
\(966\) −4.32715e37 −2.10857
\(967\) 3.53299e37i 1.69946i 0.527216 + 0.849731i \(0.323236\pi\)
−0.527216 + 0.849731i \(0.676764\pi\)
\(968\) 1.09312e37i 0.519072i
\(969\) 1.64272e37 0.770043
\(970\) 0 0
\(971\) −2.42162e37 −1.10628 −0.553141 0.833088i \(-0.686571\pi\)
−0.553141 + 0.833088i \(0.686571\pi\)
\(972\) − 1.39002e37i − 0.626894i
\(973\) − 1.78285e37i − 0.793789i
\(974\) 1.71082e37 0.751998
\(975\) 0 0
\(976\) 4.35180e36 0.186443
\(977\) − 2.74750e36i − 0.116213i −0.998310 0.0581066i \(-0.981494\pi\)
0.998310 0.0581066i \(-0.0185063\pi\)
\(978\) − 2.46718e37i − 1.03030i
\(979\) −1.88669e37 −0.777887
\(980\) 0 0
\(981\) 2.53887e37 1.02042
\(982\) 5.75695e36i 0.228454i
\(983\) − 2.03235e37i − 0.796303i −0.917320 0.398152i \(-0.869652\pi\)
0.917320 0.398152i \(-0.130348\pi\)
\(984\) −2.21290e37 −0.856099
\(985\) 0 0
\(986\) −6.09141e36 −0.229751
\(987\) − 5.85802e37i − 2.18166i
\(988\) 2.23555e37i 0.822096i
\(989\) −1.73598e37 −0.630363
\(990\) 0 0
\(991\) 1.72765e37 0.611695 0.305847 0.952081i \(-0.401060\pi\)
0.305847 + 0.952081i \(0.401060\pi\)
\(992\) − 3.84877e36i − 0.134563i
\(993\) 4.41396e37i 1.52392i
\(994\) −1.23219e37 −0.420095
\(995\) 0 0
\(996\) −1.07061e37 −0.355952
\(997\) − 7.90582e36i − 0.259572i −0.991542 0.129786i \(-0.958571\pi\)
0.991542 0.129786i \(-0.0414290\pi\)
\(998\) 3.56177e36i 0.115487i
\(999\) −1.23015e37 −0.393903
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.b.h.49.1 10
5.2 odd 4 50.26.a.j.1.1 yes 5
5.3 odd 4 50.26.a.i.1.5 5
5.4 even 2 inner 50.26.b.h.49.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.26.a.i.1.5 5 5.3 odd 4
50.26.a.j.1.1 yes 5 5.2 odd 4
50.26.b.h.49.1 10 1.1 even 1 trivial
50.26.b.h.49.10 10 5.4 even 2 inner